ECE 320-Quiz \#3 - Name

Ideal Diodes, LEDs, AC to DC Converters - Spring 2022

1) Determine the voltages and currents for the following circuit. Assume

- R is $900+100^{*}$ (your birth month) + (your birthday). For example, May $14=1414$ Ohms)

$\underset{\substack{\text { 900 toormo tay }}}{\mathrm{R}}$	v_{1}	12	${ }^{13}$	14	15
1414	0.7 V	6.577 mA	0	0	6.577 mA

$$
I_{2}=\left(\frac{10 V-0.7 V}{1414 \Omega}\right)=6.577 \mathrm{~mA}
$$

2) Determine the voltages and currents for the following circuit. Assume

- Ideal green LEDs $(\mathrm{Vf}=3.0 \mathrm{~V})$.
- R is $900+100^{*}$ (your birth month) + (your birthday).

V 1 V	V 2	V 3	Id 1	Id 2	Id 3
4.555 V	1.555 V	3.0 V	0.778 mA	0	1.555 mA

If all three diodes are on

$$
\mathrm{V} 3=3 \mathrm{~V}, \mathrm{~V} 2=6 \mathrm{~V}, \mathrm{~V} 1=9 \mathrm{~V}
$$

Current in doesn't match current out

$$
\begin{aligned}
& \text { Current in }=\left(\frac{10 V-9 V}{1414 \Omega}\right)=707 \mu A \\
& \text { Current Out }=\left(\frac{9 V}{3 k \Omega}\right)+\ldots=3 m A+\ldots
\end{aligned}
$$

At least one diode is off.

- If $\mathrm{V} 0=0 \mathrm{~V}$, all three diodes are off
- Once V1 rises above 3V, Diode 1 turns on and Diode 3 turns on
- Assume diodes 1 and 3 are on

V1 is then

$$
\left(\frac{V_{1}-10}{1414}\right)+\left(\frac{V_{1}-3}{1000}\right)+\left(\frac{V_{1}}{3000}\right)+\left(\frac{V_{1}-3}{2000}\right)=0
$$

$$
V_{1}=4.555 \mathrm{~V}
$$

3) A green and white LED are connected to a 10 V source. Determine the current and brighness of each LED. Assume

- R is $900+100$ (your birth month) + (your birthday).
- 3W LED: Vf=3.6V @ 750mA 180 Lumens @ 750mA
- 10W LED $\quad \mathrm{Vf}=11.0 \mathrm{~V} @ 1000 \mathrm{~mA} \quad 650$ Lumens @ 1000 mA

$\stackrel{\mathrm{R}^{\mathrm{R}}}{900+100^{\mathrm{m}}+\mathrm{day}}$	3W LED		10W LED	
	Ia	Lumens	Ib	Lumens
1414	8.568 mA	2.056	3.728 mA	2.423

$I_{a}=\left(\frac{20-3.6}{1414+500}\right)=8.568 m A$
$\left(\frac{8.568 \mathrm{~mA}}{750 \mathrm{~mA}}\right) 180$ Lumens $=2.056$ Lumens
$I_{b}=\left(\frac{20 \mathrm{~V}-11.0 \mathrm{~V}}{1414 \Omega+1000 \Omega}\right)=3.728 \mathrm{~mA}$
$\left(\frac{3.728 \mathrm{~mA}}{1000 \mathrm{~mA}}\right) 650$ Lumens $=2.423$ Lumens
4) The following waveform is found using CircuitLab for an AC to DC converter. Determine the following

Frequency (Hz)	V 2	
	DC (average)	AC (Vpp)
400 Hz	13.87 V	370 mVpp

5) Determine the voltages V1 and V2 (both DC and AC). Assume

- Ideal silicon didoes $(\mathrm{Vf}=0.7 \mathrm{~V})$
- $\mathrm{C} 1=\left(900+100^{*}(\right.$ your birth month $)+($ your birthday $\left.)\right) u F$.

$\mathrm{C} 1(\mathrm{uF)})$ $900+100^{2} \mathrm{~m}+$ day	V 1		V 2	
$\mathbf{1 4 1 4 u F}$	$\mathbf{1 7 . 6 8 V}$	$\mathbf{3 . 2 5 0 V}(\mathrm{Vlpp})$	DC	$\mathrm{AC}(\mathrm{V} 2 \mathrm{pp})$

$$
\max \left(V_{1}\right)=19.3 V
$$

$$
I \approx\left(\frac{19.3 \mathrm{~V}}{70 \Omega}\right)=275.7 m A \quad \text { worst case }
$$

$$
I=C \cdot \frac{d V}{d t}
$$

$$
275.7 m A=1414 \mu F \cdot \frac{d V}{1 / 60 s}
$$

$$
d V=3.250 V_{p p}=V_{1}(A C)
$$

$$
V_{1}(D C)=19.3 V-\frac{1}{2} V_{1}(A C)=17.68 V
$$

$$
V_{2}(D C)=\left(\frac{60}{60+10}\right) V_{1}(D C)=15.154 V
$$

$$
V_{2}(A C)=\left(\frac{(9.809-j 22.189)}{(9.809-j 22.189)+(10+j 150.8)}\right) V_{1}(A C)
$$

$$
V_{2}(A C)=0.606 V_{p p}
$$

6) Determine C 1 , and C 2 so that

- The ripple at V 1 is 4 Vpp and
- The ripple at $\mathrm{V} 2=500 \mathrm{mV} \mathrm{pp}$

C 1	C 2
1030 uF	127.6 uF

$$
\begin{aligned}
& V_{1}(D C)=19.3 \mathrm{~V}-\frac{1}{2} \cdot 4 V_{p p}=17.3 \mathrm{~V} \\
& I=\left(\frac{17.3 \mathrm{~V}}{70 \Omega}\right)=247 \mathrm{~mA}
\end{aligned}
$$

$$
247 m A=C_{1} \cdot \frac{4 V}{1 / 60 s}
$$

$$
C_{1}=1030 \mu F
$$

Assume $\mathrm{C} 2=0$

$$
\begin{aligned}
& V_{2}(A C)=\left(\frac{60}{60+(10+j 150.8)}\right) 4 V_{p p}=1.444 V_{p p} \\
& \left|\frac{1}{j \omega C_{2}}\right|=\left(\frac{0.5 V_{p p}}{1.444 V_{p p}}\right) 60 \Omega=20.782 \Omega \\
& C_{2}=127.6 \mu F
\end{aligned}
$$

