ECE 320-Quiz \#4 - Name

Max/Min, Clipper, Transistors. Spring 2022

1) Max/Min: Determine the voltages and currnets for the following min/max circuit.

- Assume ideal silicon diodes ($\mathrm{Vf}=0.7 \mathrm{~V}$)
- $\mathrm{R}=900+100$ * Birth Month + Birth Day. May 14th for example gives $\mathrm{R}=1414$ Ohms

R	V1	V2	V3	I4	I5
$900+100 * M 0+$ Day					

2) Max/Min: Determine the voltages and currnets for the following min/max circuit.

- Assume ideal silicon diodes ($\mathrm{Vf}=0.7 \mathrm{~V}$)
- $\mathrm{R}=900+100$ * Birth Month + Birth Day.

R	V1	V2	V3	I4	I5
$900+100^{*}$ Mo + Day					

3) Clipper: Determine $\{\mathrm{R} 0, \mathrm{R} 1, \mathrm{R} 2, \mathrm{Vz} 1, \mathrm{Vz} 2\}$ to implement the following function.

- Let R3 be $1000+100$ * your birth month + your birth day.

R3 $900+100 *$ Mo + Day	R0	Vz1	R1	Vz2	R2

4) Clipper: Design a circuit to clip the voltage at +8 V and -7 V

$$
y=\left\{\begin{array}{cc}
+8 V & x>8 V \\
x & -7 V \\
-7 V & x<-7 V
\end{array}\right.
$$

5) The VI characteristics for an NPN transistor are shown below

- Draw the load line for the following circuit
- Show on the load line the operating point (Vce, Ic) when Vin $=2 \mathrm{~V} \& 6 \mathrm{~V}$.

Assume

- $\quad \mathrm{Vbe}=0.7 \mathrm{~V}$
- $\mathrm{Vce}=0.2 \mathrm{~V}$ when saturated

R $900+10 *^{*}$ Mo + Day	Load Line	Vin $=2.0 \mathrm{~V}$	Vin $=6.0 \mathrm{~V}$		
	x and y intercept				
or					
show on graph				\quad	Vce and Ic
:---:					
or					
show on graph	\quad	Vce and Ic			
:---:					
or					
show on graph					

6) The voltages for the following circuit are measured (shown below). From these measurements, determine the following:

R $900+100 * \mathrm{Mo}+$ Day	Ib (mA)	Ic (mA)	Current Gain (beta)	Operating Region off / active / saturated

