ECE 320-Quiz \#7 - Name

DC to AC, SCR

DC to AC Converter

1) Assume the Fourier transform for the output of a DC to AC converter driving a 1 Ohms reisistor is as follows:

- note: units are Vp (peak voltage)
- Energy $=\frac{1}{2}\left(a_{n}^{2}+b_{n}^{2}\right) \quad$ Watts: assumes a 1 Ohm resistive load

Harmonic	0 (DC)	1	2	3	4	5
an (cosine)	0	$\mathbf{5}$ Birth Month (1..12)	0	0	0	0
bn (sine)	0	$\mathbf{1 4}$ Birth Date (1..31)	0	0	0	0
Energy (Watts)	$\mathbf{0}$	$\mathbf{1 1 0 . 5}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

Determine the following:

Total Energy in the signal Watts	Energy in the 1st harmonic Watts	Efficiency \% of energy in the 1st harmonic
$\mathbf{1 1 0 . 5}$	$\mathbf{1 1 0 . 5}$	$\mathbf{1 0 0 \%}$

DC to AC Converter

2) Assume the Fourier transform for the output of a DC to AC converter driving a 1 Ohms reisistor is as follows:

- note: units are Vp (peak voltage)
- Watts: assumes a 1 Ohm resistive load
- Energy $=\frac{1}{2}\left(a_{n}^{2}+b_{n}^{2}\right)$

Harmonic	0 (DC)	1	2	3	4	5
an (cosine)	0	60 Vp	0	10 Vp	14 Birth Date (1..31)	0
bn (sine)	0	0	$\mathbf{5}$ Birth Month (1..12)	0	0	5 Vp
Energy (Watts)	$\mathbf{0}$	$\mathbf{1 8 0 0}$	$\mathbf{1 2 . 5}$	$\mathbf{5 0}$	$\mathbf{9 8}$	$\mathbf{1 2 . 5}$

Determine the following:

Total Energy in the signal Watts	Energy in the 1st harmonic Watts	Efficiency \% of energy in the 1st harmonic
1973 W	1800 W	$\mathbf{9 1 . 2 \%}$

Circuits \& Differential Equations

3) Write the differential equation which describes the following circuit. Assume

- $\mathrm{L}=$ your birth month (1..12) mH
- R 2 = your birth date (1..31) Ohms

Note:

- $I=C \frac{d V}{d t}$
- $V=L \frac{d I}{d t}$

$$
\begin{aligned}
& V_{3}=L \frac{d I_{3}}{d t}=V_{0}-V_{1} \\
& I_{1}=0.01 \frac{d V_{1}}{d t}=I_{3}-\left(\frac{V_{1}}{50}\right)-\left(\frac{V_{1}-V_{2}}{R_{2}}\right) \\
& I_{2}=0.02 \frac{d V_{2}}{d t}=\left(\frac{V_{1}-V_{2}}{R_{2}}\right)-\left(\frac{V_{2}}{60}\right)
\end{aligned}
$$

SCR (4 diode version)

4) SCR: Analysis. Determine the votlages at V1 and V2 (both DC). Assume

- R1 = your birth month (1..12)
- $\mathrm{X}=10+$ your birth date ($11 . .41$ degree firing angle)

Firing Angle day +10	V1		V2	
	DC	AC (V1pp)	DC	AC (V2pp)
24 degrees	16.047 V	$\mathbf{4 2 . 2 0 2 ~ V p p}$	13.755 V	4.902 Vpp

$$
\begin{aligned}
& V_{1}(D C)=\left(\frac{2}{\pi}\right) \cdot 30 V \cdot \cos \left(24^{0}\right)-1.4 \\
& V_{1}(D C)=16.047 V \\
& V_{2}(D C)=\left(\frac{30}{30+5}\right) V_{1}(D C) \\
& V_{2}(D C)=13.755 V
\end{aligned}
$$

$$
V_{1}(A C)=30\left(1+\sin \left(24^{0}\right)\right)=42.202 V_{p p}
$$

$$
V_{2}(A C)=\left(\frac{(8.554-j 13.544)}{(8.554-j 13.544)+(5+j 150.8)}\right) \cdot V_{1}(A C)
$$

$$
V_{2}(A C)=4.902 V_{p p}
$$

SCR (5 diode version)

5) SCR: Analysis. Determine the votlages at V1 and V2 (both DC). Assume

- R1 = your birth month (1..12)
- $\mathrm{X}=10+$ your birth date ($11 . .41$ degree firing angle)

Firing Angle day +10	V1		V2	
	DC	AC (V1pp)	DC	AC (V2pp)
$\mathbf{2 4}$ degrees	$\mathbf{1 7 . 1 4 6} \mathrm{V}$	$\mathbf{2 9 . 3} \mathrm{Vpp}$	$\mathbf{1 4 . 6 9 7} \mathrm{V}$	$\mathbf{3 . 4 0 3} \mathrm{Vpp}$

$$
\begin{aligned}
& V_{1}(D C)=\left(\frac{29.3 V}{\pi}\right)\left(1+\cos \left(24^{0}\right)\right)-0.7 \\
& V_{1}(D C)=17.146 V \\
& V_{2}(D C)=\left(\frac{30}{30+5}\right) V_{1}(D C) \\
& V_{2}(D C)=14.697 V
\end{aligned}
$$

$$
V_{1}(A C)=29.3 V_{p p}
$$

$$
V_{2}(A C)=\left(\frac{(8.554-j 13.544)}{(8.554-j 13.544)+(5+j 150.8)}\right) \cdot V_{1}(A C)
$$

$$
V_{2}(A C)=3.403 V_{p p}
$$

6) SCR Design. Determine the firing angle and C so that

- $\mathrm{V} 2(\mathrm{DC})=10.00 \mathrm{~V}$
- $\mathrm{V} 2(\mathrm{AC})=1.00 \mathrm{Vpp}$
- R1 = Your Birth Month (1..12)

$\mathrm{V} 1(\mathrm{DC})$	Firing Angle	C	R1 Month (1..12)
11.667 V	46.828 degrees	444.5 uF	5 Ohms

$$
\begin{aligned}
& V_{1}(D C)=\left(\frac{30+5}{30}\right) 10.00 V=11.667 V \\
& V_{1}(D C)=\left(\frac{2}{\pi}\right) \cdot 30 V \cdot \cos (\theta)-1.4 \\
& \theta=46.828^{0} \\
& V_{1}(A C)=30\left(1+\sin \left(46.828^{0}\right)\right)=51.879 V_{p p}
\end{aligned}
$$

If $\mathrm{C}=0$

$$
V_{2}(A C)=\left(\frac{30}{30+(5+j 150.8)}\right) \cdot 51.879 V_{p p}=10.054 V_{p p}
$$

To bring this down to 1.00 Vpp

$$
\left|\frac{1}{j \omega C}\right|=\left(\frac{1 V_{p p}}{10.054 V_{p p}}\right) 30 \Omega=2.984 \Omega
$$

$$
C=444.5 \mu F
$$

