ECE 320-Quiz \#7 - Name

DC to AC, SCR

DC to AC Converter

1) Assume the Fourier transform for the output of a DC to AC converter driving a 1 Ohms reisistor is as follows:

- note: units are Vp (peak voltage)
- Energy $=\frac{1}{2}\left(a_{n}^{2}+b_{n}^{2}\right) \quad$ Watts: assumes a 1 Ohm resistive load

Harmonic	0 (DC)	1	2	3	4	5
an (cosine)	0		0	0	0	0
bn (sine)	0	Birth Month (1..12)		0	0	0

Determine the following:

Total Energy in the signal	Energy in the 1st harmonic Watts	Watts

DC to AC Converter

2) Assume the Fourier transform for the output of a DC to AC converter driving a 1 Ohms reisistor is as follows:

- note: units are Vp (peak voltage)
- Watts: assumes a 1 Ohm resistive load
- Energy $=\frac{1}{2}\left(a_{n}^{2}+b_{n}^{2}\right)$

Harmonic	0 (DC)	1	2	3	4	5
an (cosine)	0	60 Vp	0	10 Vp		0
bn (sine)	0	0			Birth Date (1..31)	

Determine the following:

Total Energy in the signal Watts	Energy in the 1st harmonic Watts	Efficiency \% of energy in the 1st harmonic

Circuits \& Differential Equations

3) Write the differential equation which describes the following circuit. Assume

- $\mathrm{L}=$ your birth month (1..12) mH
- R 2 = your birth date (1..31) Ohms

Note:

- $I=C \frac{d V}{d t}$
- $V=L \frac{d I}{d t}$

SCR (4 diode version)
4) SCR: Analysis. Determine the votlages at V1 and V2 (both DC). Assume

- $\mathrm{R} 1=$ your birth month (1..12)
- $X=10+$ your birth date ($11 . .41$ degree firing angle)

Firing Angle day +10	DC	$\mathrm{AC}(\mathrm{V} 1 \mathrm{pp})$	DC	$\mathrm{AC}(\mathrm{V} 2 \mathrm{pp})$

SCR (5 diode version)
5) SCR: Analysis. Determine the votlages at V1 and V2 (both DC). Assume

- $\mathrm{R} 1=$ your birth month (1..12)
- $X=10+$ your birth date ($11 . .41$ degree firing angle)

Firing Angle day +10	DC	$\mathrm{AC}(\mathrm{V} 1 \mathrm{pp})$	DC	$\mathrm{AC}(\mathrm{V} 2 \mathrm{pp})$

6) SCR Design. Determine the firing angle and C so that

- $\mathrm{V} 2(\mathrm{DC})=10.00 \mathrm{~V}$
- $\mathrm{V} 2(\mathrm{AC})=1.00 \mathrm{Vpp}$
- R 1 = Your Birth Month (1..12)

V1(DC)	Firing Angle	C	R1 Month (1..12)

