ECE 320 - Quiz #7 - Name

DC to AC, SCR

DC to AC Converter

1) Assume the Fourier transform for the output of a DC to AC converter driving a 1 Ohms reisistor is as follows:

- note: units are Vp (peak voltage)
- Energy = $\frac{1}{2}(a_n^2 + b_n^2)$ Watts: assumes a 1 Ohm resistive load

Harmonic	0 (DC)	1	2	3	4	5
an (cosine)	0		0	0	0	0
		Birth Month (112)				
bn (sine)	0		0	0	0	0
		Birth Date (131)				

Determine the following:

Total Energy in the signal Watts	Energy in the 1st harmonic Watts	Efficiency % of energy in the 1st harmonic

DC to AC Converter

2) Assume the Fourier transform for the output of a DC to AC converter driving a 1 Ohms reisistor is as follows:

- note: units are Vp (peak voltage)
- Watts: assumes a 1 Ohm resistive load
- $Energy = \frac{1}{2}(a_n^2 + b_n^2)$

Harmonic	0 (DC)	1	2	3	4	5
an (cosine)	0	60Vp	0	10Vp		0
					Birth Date (131)	
bn (sine)	0	0		0	0	5Vp
			Birth Month (112)			

Determine the following:

Total Energy in the signal Watts	Energy in the 1st harmonic Watts	Efficiency % of energy in the 1st harmonic

Circuits & Differential Equations

3) Write the differential equation which describes the following circuit. Assume

- L = your birth month (1..12) mH
- R2 = your birth date (1..31) Ohms

Note:

• $I = C \frac{dV}{dt}$ • $V = L \frac{dI}{dt}$

SCR (4 diode version)

4) SCR: Analysis. Determine the votlages at V1 and V2 (both DC). Assume

- R1 = your birth month (1..12)
- X = 10 + your birth date (11..41 degree firing angle)

Firing Angle day + 10	V1		V2	
day + 10	DC	AC (V1pp)	DC	AC (V2pp)

SCR (5 diode version)

5) SCR: Analysis. Determine the votlages at V1 and V2 (both DC). Assume

- R1 = your birth month (1..12)
- X = 10 + your birth date (11..41 degree firing angle)

Firing Angle day + 10	V1		V2	
day + 10	DC	AC (V1pp)	DC	AC (V2pp)

6) SCR Design. Determine the firing angle and C so that

- V2(DC) = 10.00V
- V2(AC) = 1.00Vpp
- R1 = Your Birth Month (1..12)

V1(DC)	Firing Angle	С	R1 Month (112)

