ECE 320 - Homework \#1

EE 206 Review, Phasors. Due Wednesday, Janyary 19th
Please submit as a Word or pdf file if submitting on Blackboard or emailing to Jacob_Glower@yahoo.com with subject ECE 320 HW\#1

Resistors in series and parallel

1) Assume $X=$ infinity (DC analysis). Determine the resistance Rab (it will be a real number)

$400+30=435$ Ohms
435 || $300=177.55$ Ohms
$177.55+25=202.55 \mathrm{Ohms}$
202.55 || $200=100.63 \mathrm{Ohms}$
$100.63+15=115.63 \mathrm{Ohms}$
series
parallel
series
parallel
series
ans: 115.63 Ohms
2) Assume $-j X=-j 100$. Determine the resistance Rab (it will be a complex number)
$400 \|-\mathrm{j} 100=23.529-\mathrm{j} 94.118 \quad$ parallel
$(23.529-\mathrm{j} 94.118)+(35)=58.529-\mathrm{j} 94.118$
($58.529-\mathrm{j} 94.118)\|(300)\|(-\mathrm{j} 100)=21.451-\mathrm{j} 46.784$
$(21.451-\mathrm{j} 46.784)+(25)=46.451-\mathrm{j} 46.784$
$(46.451-j 46.784)\|(200)\|(-j 100)=23.164-j 30.660$
$(23.164-\mathrm{j} 30.660)+(15)=38.164-\mathrm{j} 30.660$
ans: 38.164-j30.660

Voltage Nodes \& Current Loops

3) (Voltage Nodes): For the following circuit

- a) Write the voltage node equations
- b) Solve using Matlab (or similar program)
- c) Check your answers in CircuitLab (or similar circuit simulator)

Voltage Node Equations

$$
\begin{aligned}
& V_{3}-V_{2}=20 \\
& \left(\frac{V_{1}}{250}\right)-15 m A+\left(\frac{V_{1}-V_{3}}{150}\right)=0
\end{aligned}
$$

SuperNode (others also work)

$$
\left(\frac{V_{1}}{250}\right)+\left(\frac{V_{2}}{350}\right)+\left(\frac{V_{3}}{450}\right)+\left(\frac{V_{3}}{200}\right)=0
$$

Group terms

$$
\begin{aligned}
& V_{3}-V_{2}=20 \\
& \left(\frac{1}{250}+\frac{1}{150}\right) V_{1}-\left(\frac{1}{150}\right) V_{3}=15 m A \\
& \left(\frac{1}{250}\right) V_{1}+\left(\frac{1}{350}\right) V_{2}+\left(\frac{1}{450}+\frac{1}{200}\right) V_{3}=0
\end{aligned}
$$

Place in matrix form

$$
\left[\begin{array}{ccc}
0 & -1 & 1 \\
\left(\frac{1}{250}+\frac{1}{150}\right) & 0 & \left(\frac{-1}{150}\right) \\
\left(\frac{1}{250}\right) & \left(\frac{1}{350}\right) & \left(\frac{1}{450}+\frac{1}{200}\right)
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]=\left[\begin{array}{c}
20 \\
0.015 \\
0
\end{array}\right]
$$

Solve using Matlab

```
\begin{tabular}{rrr}
0 & -1.0000 & 1.0000 \\
0.0107 & 0 & -0.0067 \\
0.0040 & 0.0029 & 0.0072
\end{tabular}
>> B = [20;0.015;0]
\[
\begin{array}{r}
20.0000 \\
0.0150
\end{array}
\]
>> \(V=\operatorname{inv}(\mathrm{A}) * B\)
\begin{tabular}{lr} 
V1 & 3.9659 \\
V2 & -15.9046 \\
V3 & 4.0954
\end{tabular}
>>
```

$\gg A=[0,-1,1 ; 1 / 250+1 / 150,0,-1 / 150 ; 1 / 250,1 / 350,1 / 450+1 / 200]$

Check in CircuitLab: The answers match

4) (Current Loops) For the following circuit

- a) Write the current loop equations
- b) Solve using Matlab (or similar program)
- c) Check your answers in CircuitLab (or similar circuit simulator)

Problem 3 \& 4
$I_{1}-I_{2}=15 m A$
$350\left(I_{3}-I_{2}\right)-20+450\left(I_{3}-I_{4}\right)=0$
$450\left(I_{4}-I_{3}\right)+200 I_{4}=0$
SuperLoop (other superloops also work)

$$
250 I_{2}+150 I_{1}+200 I_{4}=0
$$

Group terms

$$
\begin{aligned}
& I_{1}-I_{2}=15 \mathrm{~mA} \\
& -350 I_{2}+800 I_{3}-450 I_{4}=20 \\
& -450 I_{3}+650 I_{4}=0 \\
& 250 I_{2}+150 I_{1}+200 I_{4}=0
\end{aligned}
$$

Place in matrix form

$$
\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & -350 & 800 & -450 \\
0 & 0 & -450 & 650 \\
150 & 250 & 0 & 200
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3} \\
I_{4}
\end{array}\right]=\left[\begin{array}{c}
0.015 \\
20 \\
0 \\
0
\end{array}\right]
$$

Solve

```
>> A = [1,-1,0,0 ; 0,-350,800,-450 ; 0,0,-450,650 ; 150,250,0,200]
            1 
            0 -350 800 -450
            0 0
        150 250 0 200
>> B = [0.015 ; 20 ; 0 ; 0]
        0.0150
        20.0000
            0
            0
>> I = inv(A)*B
I1 -0.0009
I2 -0.0159
I3 0.0296
I4 0.0205
```


Check in CircuitLab

- I1 is the current through $\mathrm{R} 1(-863.6 \mathrm{uA}=-0.0009 \mathrm{~A}$ rounded $)$
- I2 is the current through R2 $(-15.86 \mathrm{~mA}$ rounded to $-15.9 \mathrm{~mA})$
- I4 is the current through R5 (20.48 mA rounded to 20.5 mA)
- (I3-I4) is the current through R4 $(9.101 \mathrm{~mA})$

5) Assume Vin contains a DC and $400 \mathrm{rad} / \mathrm{sec}(63.66 \mathrm{~Hz})$ signal:

$$
V_{i n}=10+6 \cos (450 t)+4 \sin (450 t)
$$

- a) Determine the voltage, V2, using phasor analysis
- b) Check your answer using CircuitLab (or similar program)

Use superposition: treat this as two separate problems

- $\operatorname{Vin}=10$
- $\operatorname{Vin}=6 \cos (450 t)+4 \sin (450 t)$

DC: Vin $=10$
$\mathrm{L}=0$
$\mathrm{C}=$ infinity
$V_{2}=\left(\frac{100}{100+15}\right) 10=8.696 \mathrm{~V}$
$A C: \operatorname{Vin}=6 \cos (450 t)+4 \sin (450 t)$

$$
\omega=450
$$

$L \rightarrow j \omega L=j 337.5 \Omega$
$C \rightarrow \frac{1}{j \omega C}=-j 27.778 \Omega$
$V_{\text {in }} \rightarrow 6-j 4 \quad$ real $=$ cosine,- -imag $=$ sine
$(100 \Omega)|\mid(-j 27.778 \Omega)=(7.163-j 25.788) \Omega$
$V_{2}=\left(\frac{Z_{2}}{Z_{1}+Z_{2}}\right) V_{\text {in }}$

$$
V_{2}=\left(\frac{(7.163-j 25.778)}{(7.163-j 25.778)+(15+j 337.5)}\right)(6-j 4)=-0.599+j 0.150
$$

$$
V_{2}=-0.599+j 0.150
$$

or in polar form

$$
V_{2}=0.618 \angle 165.9^{0}
$$

Check in CircuitLab

The votage source is $450 \mathrm{rad} / \mathrm{sec}$

$$
f=\frac{\omega}{2 \pi}=\frac{450}{2 \pi}=71.62 \mathrm{~Hz}
$$

The amplitude using cosine as the base function is:

$$
\begin{aligned}
& V_{\text {in }}=6-j 4=7.211 \angle-33.69^{0} \\
& V_{\text {in }}=7.211 \cos \left(450 t-33.69^{0}\right)
\end{aligned}
$$

CircuitLab uses sine-waves as the reference

$$
\begin{aligned}
& \cos (\omega t)=\sin \left(\omega t+90^{0}\right) \\
& V_{\text {in }}=7.211 \sin \left(450 t+56.31^{0}\right)
\end{aligned}
$$

V1 (blue) \& V2 (orange)
Checking the results:

- $\quad \max (\mathrm{V} 2)=9.311 \mathrm{~V}$
- $\min (\mathrm{V} 2)=8.079 \mathrm{~V}$

DC

$$
D C=\left(\frac{\max +\min }{2}\right)=8.695 \mathrm{~V}
$$

calculated $=8.696 \mathrm{~V}$
AC

$$
\begin{aligned}
A C= & (\max -\min)=1.232 V_{p p} \\
& =0.616 V_{p} \\
& =0.436 V_{r m s}
\end{aligned}
$$

Calculations were

$$
V_{2}=0.618 \angle 165.9^{0}
$$

This is the peak voltage (0.616 V p vs. 0.618 V p)

The phase shows up in the time delay

$$
\begin{aligned}
& V_{1}=7.211 \angle-33.69^{0} \\
& V_{2}=0.618 \angle 165.9^{0}=0.618 \angle-194.1^{0}
\end{aligned}
$$

V 2 is delayed by 160.4 degrees from V1 (shows up in the graph)

