ECE 320 - Homework \#2

Semiconductors, PN Junction. Due Monday, January 24th
Please make the subject "ECE 320 HW\#2" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Semiconductors

1) Why does current flow p-to-n but not n-to-p across a pn junction?

Several ways to answer this (any are OK)

Answer 1)

- When current flows p to n , it used majority carriers. A large number of carriers means low resistance.
- When current flows n to p, it uses minority carriers. A small number of carriers means high resistance.

Answer 2) A deplation zone exists across the pn junction. This prevents current flow.

- Voltage p to n decreases the depletion zone. When it goes to zero, current flows (about 0.7 V for silicon)
- Voltage n to p increases the depletion zone (blocking current flow)

Answer 3) A potential energy barrier is created across the pn junciton

- Voltage in excess of this barrier (0.7 V for silicon) allows current to flow
- Voltage less than this barrier result in no current

2) What doping of phosphorus (n-type) do you need to make an 1206 resistor have a resistance of 1200 Ohms? The dimensions of an 1206 resistor are

$$
\begin{aligned}
& \mathrm{L}=3.20 \mathrm{~mm}, \mathrm{~W}=1.60 \mathrm{~mm}, \mathrm{H}=0.95 \mathrm{~mm} \\
& R=\left(\frac{\rho L}{A}\right) \\
& 1200 \Omega=\left(\frac{\rho \cdot 0.32 \mathrm{~cm}}{(0.16 \mathrm{~cm})(0.091 \mathrm{~cm})}\right) \\
& \rho=54.6 \Omega \cdot \mathrm{~cm} \\
& \sigma=\frac{1}{\rho}=0.01832 \frac{1}{\Omega \cdot \mathrm{~cm}}=n_{n} \cdot q \cdot \mu_{n} \\
& 0.01832 \frac{1}{\Omega \cdot \mathrm{~cm}}=n_{n} \cdot\left(1.6 \cdot 10^{-19}\right) \cdot(1300) \\
& n_{n}=8.805 \cdot 10^{13} \frac{\text { atoms }}{c c}
\end{aligned}
$$

That seems like a large number, but it's one phosphorous atom for every 1 e 10 silicon atoms.
3) A thermistor has the following resistance - voltage relationship

$$
R=1000 \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

where T is the temperature in degrees C . What is the resistance at
0F Recommended temperature of a freezer

- -17.778C
- 8992 Ohms
+40 F Recommended temperature of a refrigerator
- 4.444C
- 2640 Ohms
+68 F Temperature of cold tap water (varies)
- 20.000 C
- 1250 Ohms
+120 F Tempeature of hot tap water (varies)
- 48.49 C
- 378 Ohms

Note that there is a large change in resistance with respect to temperature for thermistors.

Diode VI Characteristics

Assume the VI characteristics for a diode are (1N4004 diode in CircuitLab)

- $\mathrm{n}=1.45$
- n Vt $=0.0377$
- Idss $=7.69 \mathrm{e}-11$

$$
V_{d}=0.0377 \cdot \ln \left(\frac{I_{d}}{7.69 \cdot 10^{-11}}+1\right) \quad I_{d}=7.69 \cdot 10^{-11}\left(\exp \left(\frac{V_{d}}{0.0377}\right)-1\right)
$$

4) For the 1-diode circuit (next page - 100 Ohms is brown - black - brown)

- a) Draw the load-line for the following circuit (next page). Determine Vd and Id from the graph.
- b) Write the voltage node equations and solve for Vd and Id assuming the VI equations above

Numerical Solution

$$
\begin{aligned}
& V_{d}=0.0377 \cdot \ln \left(\frac{I_{d}}{7.69 \cdot 10^{-11}}+1\right) \\
& V_{d}+100 I_{d}=5
\end{aligned}
$$

Solving:

$$
\begin{aligned}
& \mathrm{Id}=42.4117 \mathrm{~mA} \\
& \mathrm{Vd}=0.7588 \mathrm{~V}
\end{aligned}
$$

5) Build this circuit in CircuitLab and solve for Vd and Id. (Use a 1N4004 diode)

6) Build this curcuit on your breadboard and measure Vd. From this, compute Id

- Include a photo to receive credit for this problem

	Vd	Id
4a) Graphical solution	0.7 V	42 mA
4b) Numeric Solution	0.7588 V	42.4117 mA
5) Simulation (CircuitLab)	0.7517 V	42.483 mA
6) Lab (experimental)	0.768 V	42.32 mA (calculated from Vd)

Problem 8-10: Note: If you don't have four 100 Ohm resistors (brown - black - brown), replace the resistors with ones you *do* have - ideally all the same and close to 100 Ohms. Do problems 8-10 using the resistors you use for the experimental results (problem \#10).
8) Write the voltage node equations assuming nonlinear diodes. Solve for $\{$ V1, V2, and V3 $\}$ using Matlab.

$$
\begin{aligned}
& I_{d 1}=7.69 \cdot 10^{-11}\left(\exp \left(\frac{5-V_{1}}{0.0377}\right)-1\right) \\
& I_{d 2}=7.69 \cdot 10^{-11}\left(\exp \left(\frac{V_{2}-V_{1}}{0.0377}\right)-1\right) \\
& I_{d 3}=7.69 \cdot 10^{-11}\left(\exp \left(\frac{V_{2}-V_{3}}{0.0377}\right)-1\right) \\
& -I_{d 1}-I_{d 2}+\left(\frac{V_{1}-V_{2}}{100}\right)+\left(\frac{V_{1}-V_{3}}{100}\right)+\left(\frac{V_{1}}{100}\right)=0 \\
& I_{d 2}+I_{d 3}+\left(\frac{V_{2}-V_{1}}{100}\right)=0 \\
& -I_{d 3}+\left(\frac{V_{3}}{100}\right)+\left(\frac{V_{3}-V_{1}}{100}\right)=0
\end{aligned}
$$

Solve in Matlab

Create an m-file where you guess $\{\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3\}$ and it returns how good your guess was

```
function [ J ] = Diode3( z )
    V1 = z(1);
    V2 = z(2);
    V3 = z(3);
    Idss = 7.69e-11;
    nVt = 0.0377;
    Id1 = Idss* exp( (5 - V1)/nVt - 1 );
    Id2 = Idss* exp( (V2 - V1)/nVt - 1 );
    Id3 = Idss* exp( (V2 - V3)/nVt - 1 );
    e1 = -Id1 - Id2 + (V1-V2)/100 + (V1-V3)/100 + V1/100;
    e2 = Id2 + Id3 + (V2-V1)/100;
    e3 = -Id3 + V3/100 + (V3-V1)/100;
    J = (e1)^^2 + (e2)^2 + (e3)^2;
    disp([V1, V2, V3, log10(J)])
    pause(0.1)
end
```

Solve using fminsearch()

```
>> [Z,e] = fminsearch('Diode3',[3,2,1])
    3.0000 2.0000 1.0000 138.9076
    3.1500 2.0000 1.0000 135.4790
:
:
        4.1861 3.2828 2.5446 -10.9365
        4.1861 3.2829 2.5447 -12.3080
Z=
e =
    4.9206e-013
```

>>
9) Simulate this circuit in CircuitLab to determine $\{\mathrm{V} 1, \mathrm{~V} 2$, and V3\}

10) Build this circuit with your breadboard and measure $\{\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3\}+5 \mathrm{~V}$ V1 V2 V3 gnd

- Include a photo to receive credit for problem \#10

	V1	V 2	V 3
8) Numeric Solution	4.1861 V	3.2829 V	2.5447 V
9) Simulation (CircuitLab)	4.230 V	3.283 V	2.588 V
10) Lab (experimental)	4.17 V	3.25 V	2.55 V

Problem 8-11. Change the resistors if you don't have four 100 Ohm resisotrs available

