ECE 320 - Homework \#4

Max/Min Circuits, Clipper Circuits, Transistor Theory. Due Monday, February 7th

Max/Min:

1) Determine the voltages and currents for the following max/min circuit. What function does this circuit implement? $Y=f(A, B, C, D)$

Problem 1-2.
2) Check your results in CircuitLab (or similar program) using 1N4004 diodes

	I	I 2	I 3	I	I	I 5
Calculated	10.3 mA	0	0	0.7 mA	3.6 mA	0
Simulated	10.30 mA	-76.9 pA	-76.9 pA	0.7061 mA	3.635 mA	-76.9 pA

Note that CircuitLab answers are slightly different than calculated answers.

- Calculations assumed ideal diodes
- Actual diodes are not ideal (answers are different), but
- The ideal diode model is close (answers are close but slightly different)

Clipper Circuits:

3) Design a circuit to approximate the following function subject to the following requirements:

- Input: $0 . .10 \mathrm{~V}$, capable of 100 mA
- Output: 100k resistor
- Relationship: Graph below, +/- 500 mV

Stage 1: Gain $=1.933$

$$
\text { gain }=1+\frac{R_{0}}{1 k}
$$

$$
R_{0}=933 \Omega
$$

Stage 2: Gain $=1.000$

$$
\begin{aligned}
& \text { gain }=1.000=\left(\frac{R_{1}}{R_{1}+1 k}\right)(1.933) \\
& R_{1}=\left(\frac{1.000}{1.933-1.000}\right) 1 k \Omega=1072 \Omega
\end{aligned}
$$

Stage 3: Gain $=0.4$

$$
\begin{aligned}
& \text { gain }=0.4=\left(\frac{R_{12}}{R_{12}+1 k}\right)(1.933) \\
& R_{12}=R_{1} \| R_{2}=\left(\frac{0.4}{1.933-0.4}\right) 1 k \Omega=261 \Omega \\
& R_{2}=345 \Omega
\end{aligned}
$$

4) Check your design in CircuitLab

5) Design a circuit which meets the following requirements:

- Input: -10 .. +10 V , capable of 100 mA
- Output: 1k resistor
- Relationship:

$$
V_{\text {out }}=\left\{\begin{array}{cc}
+3 V & V_{\text {in }}>+3 V \\
V_{\text {in }} & -4 V<V_{\text {in }}<+3 V \\
-4 V & V_{\text {in }}<-4 V
\end{array}\right.
$$

D1 is a 2.3 V Zener diode, D 2 is a 3.3 V Zener diode

Transistors

6) Determine the current gain, β, for the transistor show below. Also label the off, active, and saturated regions.

$$
\beta=\left(\frac{250 m A}{5 m A}\right)=50
$$

Problem 6-7
7) Draw the load-line and determine the Q-point for

- \quad Vin $=0 \mathrm{~V}$
- $\mathrm{Vin}=3 \mathrm{~V}$
- $\mathrm{Vin}=6 \mathrm{~V}$

Lab: Please include a photo of your circuit to receive credit for problems 8-10

8-10) Build the following circuit with your electronics kit.

- Measure Vce and Ic for $100<\mathrm{Rb}<$ infinity.
- Determine the operating point for each conidition and the current gain for your 3904 transistor
- Draw the load line on the graph below and mark each point you measured

Rb	Vb	Vc	lb	Ic	Current Gain (lc/lb)	Operating Region (off / active / saturated)
100 $\mathrm{br}-\mathrm{bl}-\mathrm{br}$	0.936	0.130	40.64 mA	48.70 mA	1.198	saturated
1 k $\mathrm{br}-\mathrm{bl}-\mathrm{re}$	0.856	0.157	4.144 mA	48.43 mA	11.69	saturated
10 k $\mathrm{br}-\mathrm{bl}-$ or	0.819	0.879	418 uA	41.21 mA	98.56	active
100 k $\mathrm{br} \mathrm{-} \mathrm{bl} \mathrm{-} \mathrm{ye}$	0.736	4.230	67.9 uA	7.70 mA	113.3	active
infinity	0	5.03	0	0	n / a	off

Ic (mA)

