ECE 320 - Homework \#7

DC to AC, SCR, Boolean Logic. Due Monday, February 27th
Please email to jacob.glower@ndsu.com, or submit as a hard copy, or submit on BlackBoard

DC to AC

1) Let $\mathrm{C} 1=100 \mathrm{uF}, \mathrm{L} 1=50 \mathrm{mH}$

- $\mathrm{Va}=0 \mathrm{~V} / 5 \mathrm{~V}$ square wave, $60 \mathrm{~Hz}, 0$ degree time delay
- $\mathrm{Vb}=0 \mathrm{~V} / 5 \mathrm{~V}$ square wave, $60 \mathrm{~Hz}, 180$ degree time delay
- $\mathrm{C} 1=10 \mathrm{uF}$

Determine using CircuitLab the voltage V2 (i.e. the votlage across a DC motor, modeled as a $10 \mathrm{Ohm} \& 100 \mathrm{mH}$ load)
2) Adjust C 1 so that V 2 looks closer to a sine wave
3) With the adjusted C 1 , determine the frequency content of V 2 out to 300 Hz

- From, CircuitLab, run a time-domain simulation
- Download the voltage at V2 to a CVS file (Export Plot CVS)
- Copy the data in to Matlab and determine the Fourier transform of V2 out to the 5 th harmonic (300 Hz)

What percentage of the energy is in the 1 st harmonic $(60 \mathrm{~Hz})$?

DC to AC Converter (problem $1 \& 2$)

SCR

4) Assume a firing angle of 50 degrees. Determine the voltage at V1 and V2 (both DC and AC).

- Assume V1 has two terms: a DC term and an AC (120Hz) term
- The DC term matches the actual DC voltage at V1
- The AC term matches the peak-to-peak voltage at V1.

5) Repeat problem \#4 using Fourier transforms (more accurate analysis of V1 and V2)

- Find the DC and 1st-harmonic (60Hz) terms for V1 using Fourier transforms
- Determine V2 based upon these two terms

6) Change this circuit so that

- The voltge at V 2 is 9.00 V (DC)
- With a ripple of 1.00 Vpp

SCR: Problem 4-6

Boolean Logic:

7) Design a circuit to implement Y using NAND gates
8) Design a circuit to implement Y using NOR gates

$Y(A, B, C, D)$	CD			
	00	01	11	10
00	1	0	0	X
AB 01	1	0	X	1
11	1	x	1	0
10	0	1	x	0

