ECE 320-Quiz \#1 - Name

EE 206 Review. Spring 2023

1) Determine the resistance Rab. Assume

- $\mathrm{R}=800+100^{*}$ (your birth month) + (your birth date). For example, May 14 th would give $\mathrm{R}=1314$

R	Rab
$800+100^{*} \mathrm{mo}+$ day	355.03
1314 Ohms	3

2) Determine the impedance Zab. Assume

- $R=800+100^{*}$ (your birth month) + (your birth date). For example, May 14 th would give $\mathrm{R}=1314$

R $800+100^{+m o}+$ day	Zab
$\mathbf{1 3 1 4}$	$\mathbf{2 3 7 . 2}+\mathbf{j} 196.6$

3) Give N voltage node equations to solve for the N unknown voltages. Assume

- $\mathrm{R}=800+100^{*}$ (your birth month) + (your birth date). For example, May 14th would give $\mathrm{R}=1314$

Start with the easy ones

$$
V_{5}-V_{1}=10
$$

Node Equations

$$
\begin{aligned}
& \left(\frac{V_{2}-V_{1}}{500}\right)+\left(\frac{V_{2}-V_{5}}{1314}\right)+\left(\frac{V_{2}}{200}\right)-20 m A=0 \\
& 20 m A+\left(\frac{V_{3}}{300}\right)+\left(\frac{V_{3}-V_{4}}{600}\right)=0 \\
& \left(\frac{V_{4}-V_{2}}{700}\right)+\left(\frac{V_{4}-V_{3}}{600}\right)+\left(\frac{V_{4}}{400}\right)=0
\end{aligned}
$$

Supernode

$$
\left(\frac{V_{1}}{100}\right)+\left(\frac{V_{2}}{200}\right)+\left(\frac{V_{3}}{300}\right)+\left(\frac{V_{4}}{400}\right)=0
$$

4) Give N current loop equations to solve for the N unknown currents. Assume

- $\mathrm{R}=800+100^{*}($ your birth month $)+$ (your birth date). For example, May 14th would give $\mathrm{R}=1314$

Start with the currrent source

$$
I_{2}-I_{4}=20 m A
$$

Write the loop equations

$$
\begin{aligned}
& -10+1314\left(I_{1}-I_{2}\right)+500\left(I_{1}-I_{3}\right)=0 \\
& 100 I_{3}+500\left(I_{3}-I_{1}\right)+200\left(I_{3}-I_{4}\right)=0 \\
& 300\left(I_{5}-I_{4}\right)+600\left(I_{5}-I_{2}\right)+400 I_{5}=0
\end{aligned}
$$

Superloop

$$
100 I_{3}-10+700 I_{2}+400 I_{5}=0
$$

5) Signals X and Y are displayed on an oscilloscope. Give the phasor representation for these two voltages

Frequency (Hz)	X		Y	
	Amplitude	Phase	Amplitude	Phase
$\mathbf{7 5 . 7 ~ H z}$	$\mathbf{2 . 8 V}$	$\mathbf{- 1 2 2 ~ d e g}$	$\mathbf{4 . 4 V}$	$\mathbf{- 8 7} \mathrm{deg}$

1 cycle $=13.2 \mathrm{~ms}$

$$
f=\frac{1}{\text { period }}=\frac{1}{13.2 \mathrm{~ms}}=75.7 \mathrm{~Hz}
$$

Phase for X

$$
\theta_{x}=-\left(\frac{4.5 \mathrm{~ms} \text { delay to peak }}{13.2 \mathrm{~ms} \text { period }}\right) 360^{0}=-122^{0}
$$

Phase for Y

$$
\theta_{y}=-\left(\frac{3.2 \mathrm{~ms} \text { delay to peak }}{13.2 \mathrm{~ms} \text { period }}\right) 360^{0}=-87^{0}
$$

6) Determine V2(t) assuming

$$
V_{1}(t)=12+13 \sin (\omega t)
$$

$\omega=800+100 *$ (your birth month) + (your birth date). For example, May 14th would give w = 1314

$\mathrm{w}(\mathrm{rad} / \mathrm{sec})$ $800^{+}+100^{*} \mathrm{mo}+$ day	$\mathrm{V} 2(\mathrm{t})$
$\mathbf{1 3 1 4}$	$10.08-8.493 \cos (1314 t)+9.700 \sin (1314 t)$

Let $\mathrm{R}=1314$ (or any value from 800 to 2000 Ohms)

DC:

$$
\begin{aligned}
& V_{2}=\left(\frac{1314}{1314+250}\right) 12 V \\
& V_{2}=10.08
\end{aligned}
$$

AC:

$$
\begin{aligned}
& V_{1}=-j 13 \\
& L \rightarrow j \omega L=j 657 \Omega \\
& C \rightarrow \frac{1}{j \omega C}=-j 1522 \Omega \\
& C|\mid R=752-j 649 \Omega \\
& V_{2}=\left(\frac{(752-j 649)}{(752-j 649)+(250+j 657)}\right)(-j 13)=-8.493-j 9.700
\end{aligned}
$$

