ECE 320-Quiz \#2-Name

Semiconductors, pn Junction, ideal diodes - Spring 2023

1a) What are holes and electrons?
holes: A covalent bond which is missing an electron. Holes act as positive charge carriers.
electrons: Negatively charged particles that form covalent bonds. Free electrons carry current. note: we actually don't know what electrons are. It is thought that they are fundamental particles (quarks).

1b) Why does the resistance of a semiconductor go down as temperature goes up?
as opposed to metals where the resistance goes up with temperture

As temperature goes up, you get more and more thermal holes/electrons. More charge carriers means less resistance.
2) An 0805 resistor has the following dimensions

- $\mathrm{L}=0.02 \mathrm{~cm}$
- $\mathrm{W}=0.013 \mathrm{~cm}$
- $\mathrm{H}=0.005 \mathrm{~cm}$

Determine the doping required to make a resistance of R ohms where

- $\mathrm{R}=800+100^{*}$ (your birth month) + (your birth date).
- For example, May 14th would give $\mathrm{R}=1314$ Ohms

R	Required Doping of Boron
atoms $/ \mathrm{cc}$	

Useful Equations (units cm):

$$
\begin{aligned}
& R=\frac{\rho L}{A} \\
& \sigma=\frac{1}{\rho}=n_{p} \cdot q_{p} \cdot \mu_{p}=n_{p} \cdot\left(1.6 \cdot 10^{-19}\right) \cdot(500) \\
& 1314 \Omega=\frac{\rho \cdot 0.02 \mathrm{~cm}}{(0.013 \mathrm{~cm})(0.005 \mathrm{~cm})} \\
& \rho=4.271 \Omega \cdot \mathrm{~cm} \\
& \sigma=\frac{1}{\rho}=n_{p} \cdot\left(1.6 \cdot 10^{-19}\right) \cdot 500 \\
& n_{p}=2.927 \cdot 10^{15}
\end{aligned}
$$

3) Thermistors: Assume the VI characteristics of a thermistor are

$$
R_{T}=1500 \exp \left(\frac{4000}{T+273}-\frac{4000}{298}\right) \Omega
$$

where T is the temperature in degrees C . Determine RT and the temperature if $\mathrm{V} 1=6.2 \mathrm{~V}$

- Let R be $800+$ (your birth month) * $100+$ your birthday. (March 14th would give $\mathrm{R}=1314$ Ohms)

R $800+100 *$ Month + Day	RT (Ohms) Thermistor	Temperature (C)
$\mathbf{1 3 1 4}$	$\mathbf{2 1 4 3 . 9}$	17.276 C

$$
\begin{aligned}
& V_{1}=\left(\frac{R_{T}}{R_{T}+1314}\right) V_{0} \\
& R_{T}=\left(\frac{6.2 V}{10 V-6.2 V}\right) 1314 \Omega=2143.895 \Omega
\end{aligned}
$$

$$
2143.895 \Omega=1500 \exp \left(\frac{4000}{T+273}-\frac{4000}{298}\right) \Omega
$$

$$
T=17.276^{\circ} C
$$

4) Load Lines: The VI characteristic for a diode is show on the graph below. Draw the load line for the following circuit and from the graph, determine Vd and Id

- Let R be $800+100 *$ (Birth Month) + (Birthday)

$\underset{\substack{800+1000_{\text {Moont }+ \text { Day }}}}{ }$	$\begin{aligned} & \hline \text { Load Line } \\ & \text { x-intercept } \end{aligned}$	Load Lie y-intercept	Vd	Id
1314	5.5V	4.186 mA	2.4V	2.6 mA

5) Diodes (nonlinear equations): Assume the VI characteristics of a diode are

$$
I_{d}=10^{-11} \cdot\left(\exp \left(\frac{V_{d}}{0.038}\right)-1\right)
$$

Write 7 equations so solve for 7 unknowns: V1, V2, V3, V4, Id1, Id2, Id3

- note: don't solve.

Write the diode equations

$$
\begin{aligned}
& I_{d 1}=10^{-11} \cdot\left(\exp \left(\frac{V_{0}-V_{1}}{0.038}\right)-1\right) \\
& I_{d 2}=10^{-11} \cdot\left(\exp \left(\frac{V_{1}-V_{2}}{0.038}\right)-1\right) \\
& I_{d 3}=10^{-11} \cdot\left(\exp \left(\frac{V_{3}-V_{2}}{0.038}\right)-1\right)
\end{aligned}
$$

Write the node equations

$$
\begin{aligned}
& V_{0}=10 \\
& -I_{d 1}+I_{d 2}+\left(\frac{V_{1}-V_{4}}{100}\right)=0 \\
& -I_{d 2}-I_{d 3}+\left(\frac{V_{2}-V_{4}}{200}\right)=0 \\
& I_{d 3}+\left(\frac{V_{3}-V_{4}}{300}\right)=0 \\
& \left(\frac{V_{4}-V_{1}}{100}\right)+\left(\frac{V_{4}-V_{2}}{200}\right)+\left(\frac{V_{4}-V_{3}}{300}\right)+\left(\frac{V_{4}}{400}\right)=0
\end{aligned}
$$

6) Diodes (nonlinear equations): Assume the VI characteristics of a diode are

$$
I_{d}=10^{-11} \cdot\left(\exp \left(\frac{V_{d}}{0.038}\right)-1\right)
$$

Write 7 equations so solve for 7 unknowns: V1, V2, V3, V4, Id1, Id2, Id3

- note: don't solve.

Start with the diode equations

$$
\begin{aligned}
& I_{d 1}=10^{-11} \cdot\left(\exp \left(\frac{V_{1}-V_{2}}{0.038}\right)-1\right) \\
& I_{d 2}=10^{-11} \cdot\left(\exp \left(\frac{V_{1}-V_{3}}{0.038}\right)-1\right) \\
& I_{d 3}=10^{-11} \cdot\left(\exp \left(\frac{V_{4}-V_{1}}{0.038}\right)-1\right)
\end{aligned}
$$

Write the node equations

$$
\begin{aligned}
& V_{0}=10 \\
& \left(\frac{V_{1}-V_{0}}{100}\right)+I_{d 1}+I_{d 2}-I_{d 3}=0 \\
& -I_{d 1}+\left(\frac{V_{2}}{200}\right)=0 \\
& -I_{d 2}+\left(\frac{V_{3}}{300}\right)=0 \\
& +I_{d 3}+\left(\frac{V_{4}}{400}\right)=0
\end{aligned}
$$

