ECE 320 - Quiz #2 - Name

Semiconductors, pn Junction, ideal diodes - Spring 2023

- 1a) What are holes and electrons?
- 1b) Why does the resistance of a semiconductor go down as temperature goes up? as opposed to metals where the resistance goes up with temperture

- 2) An 0805 resistor has the following dimensions
 - L = 0.02cm
 - W = 0.013cm
 - H = 0.005cm

Determine the doping required to make a resistance of R ohms where

- R = 800 + 100*(your birth month) + (your birth date).
- For example, May 14th would give R = 1314 Ohms

R 800 + 100*(your birth month) + (your birth date)	Required Doping of Boron atoms / cc

Useful Equations (units cm):

$$R = \frac{\rho L}{A}$$

$$\sigma = \frac{1}{\rho} = n_p \cdot q_p \cdot \mu_p = n_p \cdot (1.6 \cdot 10^{-19}) \cdot (500)$$

3) Thermistors: Assume the VI characteristics of a thermistor are

$$R_T = 1500 \exp\left(\frac{4000}{T + 273} - \frac{4000}{298}\right) \Omega$$

where T is the temperature in degrees C. Determine RT and the temperature if V1 = 6.2V

• Let R be 800 + (your birth month) * 100 + your birthday. (March 14th would give R = 1314 Ohms)

R 800 + 100*Month + Day	RT (Ohms) Thermistor	Temperature (C)

- 4) Load Lines: The VI characteristic for a diode is show on the graph below. Draw the load line for the following circuit and from the graph, determine Vd and Id
 - Let R be 800 + 100*(Birth Month) + (Birthday)

R 800 + 100*Month + Day	Load Line x-intercept	Load Lie y-intercept	Vd	Id

5) Diodes (nonlinear equations): Assume the VI characteristics of a diode are

$$I_d = 10^{-11} \cdot \left(\exp\left(\frac{V_d}{0.038}\right) - 1 \right)$$

Write 7 equations so solve for 7 unknowns: V1, V2, V3, V4, Id1, Id2, Id3

• note: don't solve.

6) Diodes (nonlinear equations): Assume the VI characteristics of a diode are

$$I_d = 10^{-11} \cdot \left(\exp\left(\frac{V_d}{0.038}\right) - 1 \right)$$

Write 7 equations so solve for 7 unknowns: V1, V2, V3, V4, Id1, Id2, Id3

• note: don't solve.

