Semiconductors, pn Junction, ideal diodes - Spring 2023

1a) What are holes and electrons?

1b) Why does the resistance of a semiconductor go down as temperature goes up? as opposed to metals where the resistance goes up with temperture
2) An 0805 resistor has the following dimensions

- $L=0.02 \mathrm{~cm}$
- $\mathrm{W}=0.013 \mathrm{~cm}$
- $\mathrm{H}=0.005 \mathrm{~cm}$

Determine the doping required to make a resistance of R ohms where

- $\mathrm{R}=800+100^{*}($ your birth month $)+$ (your birth date).
- For example, May 14th would give $\mathrm{R}=1314$ Ohms

\mathbf{R}	Required Doping of Boron atoms $/ \mathrm{cc}$			
$800+100 *($ your birth month $)+$ (your birth date)		\quad		
:---:	:---:			

Useful Equations (units cm):

$$
\begin{aligned}
& R=\frac{\rho L}{A} \\
& \sigma=\frac{1}{\rho}=n_{p} \cdot q_{p} \cdot \mu_{p}=n_{p} \cdot\left(1.6 \cdot 10^{-19}\right) \cdot(500)
\end{aligned}
$$

3) Thermistors: Assume the VI characteristics of a thermistor are

$$
R_{T}=1500 \exp \left(\frac{4000}{T+273}-\frac{4000}{298}\right) \Omega
$$

where T is the temperature in degrees C . Determine RT and the temperature if $\mathrm{V} 1=6.2 \mathrm{~V}$

- Let R be $800+($ your birth month) * $100+$ your birthday. (March 14 th would give $\mathrm{R}=1314$ Ohms)

R $800+100 * M$ Month + Day	RT (Ohms) Thermistor	Temperature (C)

4) Load Lines: The VI characteristic for a diode is show on the graph below. Draw the load line for the following circuit and from the graph, determine Vd and Id

- Let R be $800+100 *$ (Birth Month) + (Birthday)

R $800+100 *$ Month + Day	Load Line x-intercept	Load Lie y-intercept	Vd	Id

5) Diodes (nonlinear equations): Assume the VI characteristics of a diode are

$$
I_{d}=10^{-11} \cdot\left(\exp \left(\frac{V_{d}}{0.038}\right)-1\right)
$$

Write 7 equations so solve for 7 unknowns: V1, V2, V3, V4, Id1, Id2, Id3

- note: don't solve.

6) Diodes (nonlinear equations): Assume the VI characteristics of a diode are

$$
I_{d}=10^{-11} \cdot\left(\exp \left(\frac{V_{d}}{0.038}\right)-1\right)
$$

Write 7 equations so solve for 7 unknowns: V1, V2, V3, V4, Id1, Id2, Id3

- note: don't solve.

