ECE 320 - Homework \#3

Ideal Diodes, LEDs, AC to DC Converters. Due Monday, January 31st

Ideal Diodes:

1) Assume ideal sililcon diodes $(\mathrm{Vf}=0.7 \mathrm{~V})$. Determine the voltages and currents for the following circuit

The diode is probably on (more than 0.7 V is applied), meaning

$$
\begin{aligned}
& V_{d}=0.7 \mathrm{~V} \\
& I_{d}=\left(\frac{5 V-0.7 \mathrm{~V}}{50 \Omega}\right)=86.0 \mathrm{~mA}
\end{aligned}
$$

Note

- The results are close to what we found in homework \#2, but
- Ideal diode model is much easier to use

	Vd	Id
HW3: Ideal Diode	700 mV	86.00 mA
HW2) Graphical solution	800 mV	85 mA
HW2) Numeric Solution	821.1 mV	83.58 mA
HW2) Simulation (CircuitLab)	779.1 mV	84.42 mA
HW2) Lab (experimental)	757 mV	83.20 mA

2) Assume ideal silicon diodes $(\mathrm{Vf}=0.7 \mathrm{~V})$. Determine the voltages and currents for the following circuit

- R1, R2, R3 are the same that you used in homework \#2

There are eight permutations of on \& off. Assume

- D1, D3 are on
- D2 is off
this gives

$$
\begin{aligned}
& V_{0}=5 \mathrm{~V} \\
& V_{1}=V_{0}-0.7 \mathrm{~V}=4.3 \mathrm{~V} \\
& V_{2}=V_{1}-0.7 \mathrm{~V}=3.6 \mathrm{~V} \\
& V_{3}=0.7 \mathrm{~V}
\end{aligned}
$$

Comparing to homework \#1

- The ideal diode model is close but a little off

	V 0	V 1	V 2	V 3
Ideal Diode	5.00 V	4.30 V	3.60 V	700 mV
Numeric Solution	5.00 V	4.1955 V	3.4172 V	801.8 mV
Simulation (CircuitLab)	5.00 V	4.229 V	3.494 V	758.5 mV
Lab (experimental)	4.92 V	4.14 V	3.40 V	755 mV

LEDs

The specifications for a Piranah RGB LED are

Color	Vf @ 20mA	mcd @ 20mA
red	2.0 V	10,000
green	3.2 V	10,000
blue	3.2 V	10,000

3) Design a circuit to drive these LEDs with a 5 V source to produce olive green:

- $\operatorname{Red}=6901 \mathrm{mcd}(176 / 255)$
- \quad Green $=7686 \mathrm{mcd}(196 / 255)$
- Blue $=2313 \mathrm{mcd}(59 / 255)$

Current is proportional to brightness

$$
\begin{aligned}
& I_{r}=\left(\frac{6901 \mathrm{mcd}}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=13.802 \mathrm{~mA} \\
& R_{r}=\left(\frac{5 \mathrm{~V}-2.0 \mathrm{~V}}{13.802 \mathrm{~mA}}\right)=311.5 \Omega \\
& I_{g}=\left(\frac{7686 \mathrm{mcd}}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=15.372 \mathrm{~mA} \\
& R_{g}=\left(\frac{5 \mathrm{~V}-3.2 \mathrm{~V}}{15.372 \mathrm{~mA}}\right)=117.1 \Omega \\
& I_{b}=\left(\frac{2313 \mathrm{mcd}}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=4.626 \mathrm{~mA} \\
& R_{b}=\left(\frac{5 \mathrm{~V}-3.2 \mathrm{~V}}{4.626 \mathrm{~mA}}\right)=389.1 \Omega
\end{aligned}
$$

4) Design a circuit to drive these LEDs with a 5 V source producing salmon pink:

- $\operatorname{Red}=6666 \operatorname{mcd}(170 / 255)$
- Green $=3333$ mcd $(85 / 255)$
- \quad Blue $=5490$ mcd $(140 / 255)$

$$
\begin{aligned}
& I_{r}=\left(\frac{6666 m c d}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=13.333 \mathrm{~mA} \\
& R_{r}=\left(\frac{5 \mathrm{~V}-2.0 \mathrm{~V}}{13.333 \mathrm{~mA}}\right)=225.0 \Omega \\
& I_{g}=\left(\frac{3333 \mathrm{mcd}}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=6.667 \mathrm{~mA} \\
& R_{g}=\left(\frac{5 \mathrm{~V}-3.2 \mathrm{~V}}{6.667 \mathrm{~mA}}\right)=270.0 \Omega \\
& I_{b}=\left(\frac{5490 \mathrm{mcd}}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=10.98 \mathrm{~mA} \\
& R_{b}=\left(\frac{5 V-3.2 \mathrm{~V}}{10.980 \mathrm{~mA}}\right)=163.9 \Omega
\end{aligned}
$$

Other colors can be obtained from
https://www.rapidtables.com/web/color/color-wheel.html

AC to DC Converters

For the circuit below:
5) Determine the votlages at V1 and V2 (DC and AC)

V1:

$$
\begin{aligned}
& \max (\mathrm{V} 1)=19.3 \mathrm{~V} \\
& I \approx\left(\frac{19.3 V}{80 \Omega+15 \Omega}\right)=203.2 m A \quad \text { worst case } \\
& I=C \frac{d V}{d t} \\
& 203.2 m A=2000 \mu F \cdot\left(\frac{d V}{1 / 60 s}\right) \\
& d V=1.6930 \mathrm{~V} \\
& V_{1}(A C)=1.6930 V_{p p} \\
& V_{1}(D C)=19.3 \mathrm{~V}-\frac{1}{2} V_{1 p p}=18.45 \mathrm{~V}
\end{aligned}
$$

V2:

$$
\begin{aligned}
& V_{2}(D C)=\left(\frac{80 \Omega}{80 \Omega+15 \Omega}\right) \cdot V_{1}(D C) \\
& V_{2}(D C)=15.5398 V \\
& V_{2}(A C)=\left(\frac{(9.5607-\mathrm{j} 25.9509)}{(9.5607-j 25.9509)+(15+j 169.6460)}\right) \cdot V_{1}(A C) \\
& \left|V_{2}(A C)\right|=0.3232 V_{p p}
\end{aligned}
$$

6) Build the circuit in CircuitLab (or similar program) and verify your calculations for problem \#5

From CiruitLab

- $\max (\mathrm{V} 1)=19.11 \mathrm{~V}$
- $\min (\mathrm{V} 1)=17.62 \mathrm{~V}$
- $\quad \max (\mathrm{V} 2)=15.56 \mathrm{~V}$
- $\min (\mathrm{V} 2)=15.37 \mathrm{~V}$
$\mathrm{DC}=(\max +\min) / 2$
$\mathrm{AC}=(\max -\min) \mathrm{Vpp}$

	V1		V 2	
	DC	AC	DC	AC
Calculated	18.45 V	1.693 Vpp	15.5398 V	0.3232 Vpp
Simulated	18.365 V	1.490 Vpp	$15,465 \mathrm{~V}$	0.190 Vpp

Problem 6: CircuitLab Simulation
7) Determine C 1 and C 2 so that AC voltages are: $\mathrm{V} 1=2 \mathrm{Vpp}$ and $\mathrm{V} 2=250 \mathrm{mVpp}$.

$$
\begin{aligned}
& V_{1}(A C)=2 V_{p p} \\
& \max (\mathrm{~V} 1)=19.3 \mathrm{~V} \\
& V_{1}(D C)=19.3 V-\frac{1}{2} V_{1}(A C) \\
& V_{1}(D C)=18.3 V \\
& I=\left(\frac{18.3 V}{80 \Omega+15 \Omega}\right)=192.6 m A \\
& I=C \frac{d V}{d t} \\
& 192.6 m A=C_{1}\left(\frac{2 V_{p p}}{1 / 60 s}\right) \\
& C_{1}=1605 \mu F
\end{aligned}
$$

Assume C2 $=0$

$$
\begin{aligned}
& V_{2}(A C)=\left(\frac{80 \Omega}{(80 \Omega)+(15+j 169.64)}\right)\left(2 V_{p p}\right) \\
& \left|V_{2}(A C)\right|=822.9 m V_{p p}
\end{aligned}
$$

For the ripple to be 250 mVpp

$$
\begin{aligned}
& \left|\frac{1}{j \omega C_{2}}\right| \approx\left(\frac{250 \mathrm{mV}}{822.9 \mathrm{mV}}\right) \cdot 80 \Omega=24.3037 \Omega \\
& C_{2}=109.1 \mu F
\end{aligned}
$$

8) Build this circuit in CircuitLab (or similar program) and verify your calculations for problem \#7

From CircuitLab

- $\quad \max (\mathrm{V} 1)=19.12 \mathrm{~V}$
- $\min (\mathrm{V} 1)=17.30 \mathrm{~V}$
- $\quad \max (\mathrm{V} 2)=15.44 \mathrm{~V}$
- $\min (\mathrm{V} 2)=15.24 \mathrm{~V}$

	V1		V2	
	DC	AC	DC	AC
Calculated	18.30 V	2.000 Vpp	15.41 V	250 mVpp
Simulated	18.21 V	1.820 Vpp	15.34 V	200 mVpp

