ECE 320 - Homework \#4

Max/Min Circuits, Clipper Circuits, Transistor Theory. Due Monday, February 6th
Please submit as a hard copy or submit on BlackBoard

Max/Min:

1) Determine the voltages and currents for the following max/min circuit. What function does this circuit implement? $Y=f(A, B, C, D)$

$$
\begin{aligned}
& Y=\max (\min (A, B), \min (C, D, E)) \\
& Y=A B+C D E
\end{aligned}
$$

Problem 1-2.
2) Check your results in CircuitLab (or similar program) using 1N4004 diodes

	V 1	V 2	V 3
Calculated	3.6 V	2.9 V	2.1 V
Simulated	3.589 V	3.023 V	2.096 V

	Id1	Id2	Id3	Id4	Id5	Id6	Id7
Calcuated	0	8.11 mA	0.29 mA	0	0	9.9 mA	0
Simlated	-76 pA	8.109 mA	0.302 mA	-76 pA	-76 pA	9.904 mA	-76 pA

Clipper Circuits:

3) Design a circuit to approximate the following function subject to the following requirements:

- Input: $0 . .10 \mathrm{~V}$, capable of 100 mA
- Output: 100k resistor
- Relationship: Graph below, $+/-500 \mathrm{mV}$

R0: Slope $=1.50$

$$
1+\frac{R_{0}}{1 k}=1.5
$$

$$
R_{0}=500
$$

R1: Slope $=0.761$

$$
\begin{aligned}
& 1.5 \cdot\left(\frac{R_{1}}{R_{1}+1000}\right)=0.761 \\
& R_{1}=\left(\frac{0.507}{1-0.507}\right) 1 k=1029.77
\end{aligned}
$$

R2: Slope $=0.125$

$$
\begin{aligned}
& 1.5 \cdot\left(\frac{R_{12}}{R_{12}+1000}\right)=0.125 \\
& R_{12}=R_{1} \| R_{2}=\left(\frac{0.0833}{1-0.0833}\right) 1000=90.9 \Omega \\
& R_{2}=99.7 \Omega
\end{aligned}
$$

4) Check your design in CircuitLab

5) Design a circuit which meets the following requirements:

- Input: -10 .. +10 V , capable of 100 mA
- Output: 1k resistor
- Relationship:

$$
V_{\text {out }}=\left\{\begin{array}{cc}
+4.5 \mathrm{~V} & V_{\text {in }}>+4.5 \mathrm{~V} \\
V_{\text {in }} & \text { otherwise } \\
-5.5 \mathrm{~V} & V_{\text {in }}<-5.5 \mathrm{~V}
\end{array}\right.
$$

D1: 3.8V zener
D2: 4.8V zener

Transistors

6) Determine the current gain, β, for the transistor show below. Also label the off, active, and saturated regions. 5 mA in (Ib) produces 100 mA out (Ic)

$$
\beta=\left(\frac{100 m A}{5 m A}\right)=20
$$

7) Draw the load-line and determine the Q-point for

- V in $=0 \mathrm{~V}$
- $\mathrm{Vin}=3 \mathrm{~V}$
- $\mathrm{Vin}=6 \mathrm{~V}$

Vin $=0($ off region $)$

$$
\mathrm{Ib}=0
$$

$$
\mathrm{Ic}=20 \mathrm{Ib}=0
$$

$$
\mathrm{Vce}=10-100 \mathrm{Ic}=10 \mathrm{~V}
$$

Vin $=3 \mathrm{~V}$ (active region)

$$
\begin{aligned}
& I_{b}=\left(\frac{3 \mathrm{~V}-0.7 \mathrm{~V}}{1 \mathrm{k}}\right)=2.3 \mathrm{~mA} \\
& I_{c}=\beta I_{b}=20 I_{b}=46 \mathrm{~mA} \\
& V_{c e}=10-100 I_{c}=5.4 \mathrm{~V}
\end{aligned}
$$

Vin $=6 \mathrm{~V}$ (saturated region)

$$
I_{b}=\left(\frac{6 V-0.7 V}{1 k}\right)=5.3 \mathrm{~mA}
$$

assuming active region

$$
\begin{aligned}
& I_{c}=\beta I_{b}=106 m A \\
& V_{c e}=10-100 I_{c}=-0.6 \mathrm{~V}
\end{aligned}
$$

That can't happen: you can't have a negative voltage. This tells you that the assumption that we're in the active region is wrong. Instead, we're in the saturated region

$$
\begin{aligned}
& V_{c e}=0.2 \mathrm{~V} \\
& I_{c}=\left(\frac{10 \mathrm{~V}-0.2 \mathrm{~V}}{100}\right)=98 \mathrm{~mA}
\end{aligned}
$$

Lab: Please include a photo of your circuit to receive credit for problems 8-10

8-10) Build the following circuit with your electronics kit.

- Measure Vce and Ic for $100<\mathrm{Rb}<$ infinity.
- Determine the operating point for each conidition and the current gain for your 3904 transistor
- Draw the load line on the graph below and mark each point you measured

Rb	Vb (Volts)	Vc (Volts)	lb	Ic	Current Gain (lc/lb)	Operating Region (off /active $/$ saturated) 1 k $\mathrm{br}-\mathrm{bl}-\mathrm{re}$ 10 k $\mathrm{br}-\mathrm{bl}-\mathrm{or}$ 100 k $\mathrm{br}-\mathrm{bl}-\mathrm{ye}$ 1 M $\mathrm{br}-\mathrm{bl}-\mathrm{gr}$ infinity 0.856 V
0.736 V	0.157 V	4.144 mA	48.43 mA	11.69	saturated	

Ic (mA)

