ECE 320 - Homework \#5

555 Timers, Transistors used as a Switch, Schmitt Triggers. Due Monday, February 13th Please submit as a hard copy or submit on BlackBoard

Assume a 3904 transistor (NPN) and 3906 (PNP) (\$0.04 each)

$$
\beta=100 \quad \min \left(\left|V_{c e}\right|\right)=0.2 \mathrm{~V} \quad \max \left(I_{c}\right)=200 \mathrm{~mA}
$$

Assume a thermistor with

$$
R=1000 \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

555 Timers

1) Determine the on and off times for the voltage at V 2 for following 555 -timer circuit

$$
\begin{aligned}
& T_{o n}=\left(R_{1}+R_{2}\right) \cdot C \cdot \ln (2)=831.8 \mu s \\
& T_{o f f}=R_{2} \cdot C \cdot \ln (2)=693.1 \mu s
\end{aligned}
$$

2) Simulate this circuit in CircuitLab and verify the on and off times

From CircuitLab

- $\mathrm{t}(\mathrm{on})=11.30 \mathrm{~ms}$
- $t(o f f)=12.13 \mathrm{~ms}$
- $t(o n)=12.84 \mathrm{~ms}$

The on time is 830 us

- 831.8us calculated

The off time is 710us

- 693.1us calculated

Transistor Switch

3) Determine the voltages $\{\mathrm{Vb}, \mathrm{Vc}\}$ and currents $\{\mathrm{Ib}, \mathrm{Ic}\}$ when

V1 $=0 \mathrm{~V}$

- $\mathrm{Vb}=0 \mathrm{~V}$
- $\mathrm{Ib}=\mathrm{Ic}=0 \mathrm{~mA}$
- $\mathrm{Vc}=5 \mathrm{~V}$
$\mathrm{V} 1=5 \mathrm{~V}$

$$
\begin{aligned}
& V_{b}=0.7 \mathrm{~V} \\
& V_{c}=0.2 \mathrm{~V} \\
& I_{b}=\left(\frac{5 V-0.7 \mathrm{~V}}{1 \mathrm{k}}\right)=4.3 \mathrm{~mA} \\
& I_{c}=\left(\frac{5 \mathrm{~V}-0.2 \mathrm{~V}}{28 \Omega}\right)=153.6 \mathrm{~mA}
\end{aligned}
$$

4) Verify your calculations using CircuitLab

Vout $=5 \mathrm{~V}$ (on)

$\mathrm{Vb}=836.1 \mathrm{mV}$

- vs. 700 mV computed
$\mathrm{Vc}=241.7 \mathrm{mV}$
- vs. 200 mV computed

Vout $=0 \mathrm{~V}$
$\mathrm{Vb}=0.00 \mathrm{~V}$

- vs. 0 V
$\mathrm{Vc}=5.00 \mathrm{~V}$
- vs 5.00 V

Comparitor

Add an electronic switch to turn the speaker on and off
5) Design a comparitor (shown in blue - don't add the red resistors (they are for a Schmitt trigger)) to

- Turn on the speaker $(\mathrm{V} 3=5 \mathrm{~V})$ when $\mathrm{T}>50 \mathrm{C}$, and
- Turn off the speaker $(\mathrm{V} 3=0 \mathrm{~V})$ when $\mathrm{T}<50 \mathrm{C}$

50C corresponds to 362.7 Ohms. Assuming a 330 Ohm resistor for the voltage divider

$$
V=\left(\frac{362.7}{362.7+330}\right) 5 V=2.618 V
$$

6) Simulate the comparitor in CircuitLab to verify the on / off temperature (or resitance or voltage)

- use a voltage source (V4) to simulate the voltage at the voltage divider)

From Circuitlab

$$
\begin{array}{ll}
\mathrm{V}(\mathrm{off})=2.623 \mathrm{~V} & (\text { vs. } 2.618 \mathrm{~V} \text { computed }) \\
\mathrm{V}(\mathrm{on})=2.610 \mathrm{~V} & (\text { vs. } 2.618 \mathrm{~V} \text { computed }
\end{array}
$$

7) Build this circuit and verify it's on and off temperature (or voltage or ressistance. Replace R with a potentiometer for test purposes)

$\mathrm{Vp}=2.00 \mathrm{~V}$ (set with a potentiometer)

- Turns on at 1.99 V
- Turns off at 2.08 V

Note that for a comparitor, $\mathrm{V}(\mathrm{on})=\mathrm{V}(\mathrm{off})$ (approximately)

Schmitt Trigger

Add an electronic switch to turn the speaker on and off
8) Design a Schmitt Trigger (modify section in blue) to

- Turn on the speaker $(\mathrm{V} 3=5 \mathrm{~V})$ when $\mathrm{T}>55 \mathrm{C}$, and
- Turn off the speaker $(\mathrm{V} 3=0 \mathrm{~V})$ when $\mathrm{T}<45 \mathrm{C}$

55C (on)

$$
\begin{aligned}
& \mathrm{R}=301.6 \mathrm{Ohms} \\
& \mathrm{Va}=2.388 \mathrm{~V}
\end{aligned}
$$

45C (off)
$\mathrm{R}=438.6 \mathrm{Ohms}$
$\mathrm{Va}=2.853 \mathrm{~V}$
$\mathrm{V}(\mathrm{on})<\mathrm{V}$ (off)
connect to the minus input
$\mathrm{V}(\mathrm{on})=2.388 \mathrm{~V}$
make the offset 2.388 V
Gain:

$$
\text { gain }=\left(\frac{5 V-0 V}{2.853 V-2,388 V}\right)=10.74
$$

Pick the resistors in a 10.74 : 1 ratio

9) Simulate the compritor in CircuitLab to verify the on / off temperature (or ressitance or voltage)

- use a voltage source (V4) to simulate the voltage at the voltage divider)
$\mathrm{V}(\mathrm{off})=2.852 \mathrm{~V}$
vs. 2.853 V computed
$\mathrm{V}(\mathrm{on})=2.349 \mathrm{~V}$
vs. 2.388 V computed

10) Build this circuit and verify it's on and off temperature (or voltage or ressistance. Replace R with a potentiometer for test purposes)

Vp set to 2.00 V with a potentiometer

- Turns on at 1.98 V
- Turns off at 2.26 V

