ECE 320 - Homework \#6

H-Bridge, DC to DC Converters

H-Bridges:

1) Determine the voltages and currents for the following $1 / 2 \mathrm{H}$-bridge for

- $\mathrm{V} 1=0 \mathrm{~V}, \mathrm{~V} 2=0 \mathrm{~V}$
- $\mathrm{V} 1=5 \mathrm{~V}, \mathrm{~V} 2=5 \mathrm{~V}$
- $\mathrm{V} 1=5 \mathrm{~V}, \mathrm{~V} 2=0 \mathrm{~V}$

Assume 3904/3906 transistors

$0 \mathrm{~V}: 0 \mathrm{~V}$ results in $\mathrm{V} 2=4.8 \mathrm{~V}$

$5 \mathrm{~V}: 5 \mathrm{~V}$ results in 0.2 V

Voltages for $5 \mathrm{~V}: 0 \mathrm{~V}$ input
2) Check your results (votlages and currents) in CircuitLab

		Calculated	Simulated	Measured
$\mathrm{V} 1=5 \mathrm{~V}$	V 2	0.20 V	86.89 mV	
	13	-46.0 mA	-48.26 mA	
	V 3	4.80 V	4.884 V	
$\mathrm{~V} 2=0 \mathrm{~V}$	13	+46.0 mA	+46.87 mA	
$\mathrm{~V} 1=5 \mathrm{~V}$	V 3	2.50 V	2.500 V	
	13	0.0 mA	0.0 mA	

3) Lab: Build this circuit and measure the voltages and currents. (note: it's OK to compute the currents from the measured votlages).

		Calculated	Simulated	Measured
$\mathrm{V} 1=5 \mathrm{~V}$ $\mathrm{~V} 2=5 \mathrm{~V}$	V 3	0.20 V	86.89 mV	0.09 V
	12	-46.0 mA	-48.26 mA	-48 mA
$\mathrm{V} 1=0 \mathrm{~V}$ $\mathrm{~V} 2=0 \mathrm{~V}$	V 3	4.80 V	4.884 V	4.96 V
	12	+46.0 mA	+46.87 mA	+49 mA
$\mathrm{V} 1=5 \mathrm{~V}$ $\mathrm{~V} 2=0 \mathrm{~V}$	V 3	2.50 V	2.500 V	2.46 V
	12	0.0 mA	0.0 mA	-1 mA

DC to DC Converters

4) Determine the voltages (both DC and AC) for V1 and V2.

DC:

$$
\begin{aligned}
& V_{1}(D C)=0.65 \cdot 20 \mathrm{~V}+0.35 \cdot(-0.7 \mathrm{~V}) \\
& V_{1}(D C)=12.755 \mathrm{~V} \\
& V_{2}(D C)=\left(\frac{100}{100+5}\right) 12.755 \mathrm{~V} \\
& V_{2}(D C)=12.148 \mathrm{~V}
\end{aligned}
$$

AC:

$$
\begin{aligned}
& V_{1}(A C) \approx 20.7 V_{p p} \\
& V_{2}(A C) \approx\left(\frac{(9.2084-j 29.9145)}{(9.2084-j 29.9145)+(5+j 314)}\right) 20.7 V_{p p} \\
& V_{2}(A C) \approx 2.2006 V_{p p}
\end{aligned}
$$

5) Simulate the circuit in CircuitLab and determine V2 (DC and AC)

Use a PNP transistor as an electronic switch.

- Turn it on 65% of the time with PWM

The voltages at V 1 and V 2 are:

- $\mathrm{V} 2(\max)=13.28 \mathrm{~V}$
- $\mathrm{V} 2(\min)=10.83 \mathrm{~V}$

	V1		V2	
	Max	Min	DC	AC
Calculated	ignores the 0.2 V drop across the transistor	-0.7V	12.148 V	2.200 Vpp
Simulated	19.84 V	-0.7898V	12.055 V	2.450 Vpp

6) Change the duty cycle and C so that

- The DC voltage at $\mathrm{V} 2=5.00 \mathrm{~V}$
- The ripple at V2 is 1 Vpp

DC Analysis:

$$
\begin{aligned}
& V_{2}=5.00 \mathrm{~V}=\left(\frac{100}{100+5}\right) V_{1} \\
& V_{1}=5.25 \mathrm{~V}
\end{aligned}
$$

Duty Cycle

$$
\begin{aligned}
& 5.25 V=20 V \cdot \alpha+(1-\alpha)(-0.7 V) \\
& \alpha=\left(\frac{5.25 V+0.7 V}{20 V+0.7 V}\right)=28.74 \%
\end{aligned}
$$

AC Analysis: (Method \#1)
5 uF produced 2.588 V pp ripple, so

$$
C=\left(\frac{2.588 V_{p p}}{1 V_{p p}}\right) 5 \mu F=12.94 \mu F
$$

AC Analysis (Method \#2)

$$
\begin{aligned}
& V_{2}=1 V_{p p}=\left(\frac{R \| \frac{1}{j \omega C}}{\left.R \| \frac{1}{j \omega C}+(5+j 314)\right)}\right) 20.7 V_{p p} \\
& 1 V_{p p} \approx\left(\frac{\frac{1}{j \omega C}}{j 314}\right) 20.7 V_{p p} \\
& \frac{1}{\omega C} \approx 15.17 \Omega \\
& C \approx 10.50 \mu F
\end{aligned}
$$

7) Check your results for problem \#6 in CircuitLab

Fourier Transforms

8) Going back to problem \#4, determine the Fourier Transform for V1 out to the 3rd harmonic (3 kHz)

- 65% duty cycle square wave
- Going from -0.7 V to +19.8 V

Using the complex Fourier Transform

```
>> t = [0:0.0001:1]';
>> V0 = 19.8*(t<0.65) - 0.7*(t>=0.65);
>> c0 = mean(V0)
c0 = 12.6257
>> c1 = 2*mean(V0 .* exp(-j*2*pi*t))
c1 = -5.2779 -10.3582i
>> c2 = 2*mean(V0 .* exp(-j*2*pi*t * 2))
c2 = 3.1040-4.2724i
>> c3 = 2*mean(V0 .* exp(-j*2*pi*t * 3))
c3 = -0.6682 - 0.1058i
```

Translation: V1(t) is approximately

$$
\begin{aligned}
V_{1}(t) \approx & 12.6357 \\
& -5.2779 \cos \left(\omega_{0} t\right)+10.3582 \sin \left(\omega_{0} t\right) \\
& +3.1040 \cos \left(2 \omega_{0} t\right)+4.2724 \sin \left(2 \omega_{0} t\right) \\
& -0.6682 \cos \left(3 \omega_{0} t\right)+0.1058 \sin \left(3 \omega_{0} t\right)
\end{aligned}
$$

where ω_{0} is 1000 Hz (2000 pi)
9) Using the Fourier Transform approximation for V1, determine V2 out to the 3rd harmonic (3kHz)

```
% DC
>> R2 = 100;
>> R1 = 5;
>> Y0 = R2 / (R1+R2)*C0
YO = 12.0245
>> % 1kHz
>> w = 2*pi*1000;
>> Zc = 1/(j*W*5e-6);
>> R2 = 1/(1/Zc + 1/100);
>> R1 = 5 + j*w*0.05;
>> Y1 = (R2)/(R2+R1)*c1
Y1 = 0.1396 + 1.2267i
>> % 2kHz
>> w = 2*pi*2000;
>> Zc = 1/(j*W*5e-6);
>> R2 = 1/(1/Zc + 1/100);
> R1 = 5 + j****0.05;
>> Y2 = (R2)/(R2+R1)*C2
Y2 = -0.0970 + 0.0945i
>> % 3kHz
>> w = 2*pi*3000;
>> Zc = 1/(j*W*5e-6);
>> R2 = 1/(1/Zc + 1/100);
>>R1 = 5 + j*w*0.05;
>> Y3 = (R2)/(R2+R1)*C2
Y3 = -0.0403 + 0.0441i
```

Pretty much, all that matters is the 1st harmonic (1 kHz), resulting in the peak-to-peak voltage at V 1 being
>> V1pp $=2 * a b s(Y 1)$
v1pp $=2.4692$ vs. 2.4500 Vpp from Circuitlab
>>>>>>>
Note: A better way to estimate the signal at V2 is to take the Fourier Transform of V1
DC term

- Tells you the DC term for V1

1st Harmonic

- Tells you the AC term for V1

The other harmonics have a minimal effect and can be ignored.

