## ECE 320 - Homework \#7

DC to AC, SCR, Boolean Logic. Due Monday, February 27th

## DC to AC

1) Let $\mathrm{C} 1=100 \mathrm{uF}, \mathrm{L} 1=50 \mathrm{mH}$

- $\mathrm{Va}=0 \mathrm{~V} / 5 \mathrm{~V}$ square wave, $60 \mathrm{~Hz}, 0$ degree time delay
- $\mathrm{Vb}=0 \mathrm{~V} / 5 \mathrm{~V}$ square wave, $60 \mathrm{~Hz}, 180$ degree time delay
- $\mathrm{C} 1=10 \mathrm{uF}$

Determine using CircuitLab the voltage V2 (i.e. the votlage across a DC motor, modeled as a $10 \mathrm{Ohm} \& 100 \mathrm{mH}$ load)


DC to AC Converter (problem $1 \& 2$ )

2) Adjust C 1 so that V2 looks closer to a sine wave

Increase C1 to 200uF

3) With the adjusted C 1 , determine the frequency content of V 2 out to 300 Hz

- From, CircuitLab, run a time-domain simulation
- Download the voltage at V2 to a CVS file (Export Plot CVS)
- Copy the data in to Matlab and determine the Fourier transform of V2 out to the 5 th harmonic ( 300 Hz )

What percentage of the energy is in the 1 st harmonic $(60 \mathrm{~Hz})$ ?

```
>> t = DATA(:,1);
>> V = DATA(:,2);
>> plot(t,V)
>> size(t)
ans = 2035
>> X = V(1605:2035);
>> C = zeros(20,1);
>> for n=1:20
    C(n) = 2*mean(X .* exp(-j*n*t));
    end
>> bar(abs(C))
>> C2 = abs(C) .^ 2;
>> C2(1) / sum(C2)
ans = 0.9971
```

$\mathbf{9 9 . 7 1 \%}$ of the energy in this signal is in the 1st harmonic


## SCR

4) Assume a firing angle of 50 degrees. Determine the voltage at V1 and V2 (both DC and AC).

- Assume V1 has two terms: a DC term and an AC (120Hz) term
- The DC term matches the actual DC voltage at V1
- The AC term matches the peak-to-peak voltage at V1.


SCR: Problem 4-6
DC Voltage:

$$
\begin{aligned}
& V_{1}(D C) \approx \frac{2}{\pi} V_{p} \cos \theta-1.4 \\
& V_{1}(D C)=\frac{2}{\pi} \cdot 20 \mathrm{~V} \cdot \cos \left(50^{0}\right)-1.4 \\
& V_{1}(D C)=6.7842 \mathrm{~V} \\
& V_{2}(D C)=\left(\frac{100}{100+10}\right) V_{1}(D C)=6.1675 \mathrm{~V}
\end{aligned}
$$

AC Voltage

$$
\begin{aligned}
& V_{1}(A C)=20 V \cdot\left(1+\sin \left(50^{0}\right)\right) \\
& V_{1}(A C)=35.3209 V_{p p} \\
& V_{2}(A C)=\left(\frac{(9.9047-j 29.8725)}{(9.9047-j 29.8725)+(10+j 266.2)}\right) \cdot 35.3209 V_{p p} \\
& \left|V_{2}(A C)\right|=5.6331 V_{p p}
\end{aligned}
$$

5) Repeat problem \#4 using Fourier transforms (more accurate analysis of V1 and V2)

- Find the DC and 1st-harmonic (60Hz) terms for V1 using Fourier transforms
- Determine V2 based upon these two terms


## DC Term:

```
>> t = [0:0.0001:1]' * pi + (50/180)*pi;
>> V1 = 20*sin(t) - 1.4;
>> DC = mean(V1)
DC = 6.7834
>> AC = 2*mean(V1 .* exp(-j*2*t))
AC = -11.8585 + 7.6310i
>> 2*abs(AC)
ans = 28.2033
```

The 1 st harmonic is actually 28.2 Vpp (vs. 35.32 Vpp ). A better estimate of the AC votlage at V2 would be

$$
\begin{aligned}
& V_{2}(A C)=\left(\frac{(9.9047-\mathrm{j} 29.8725)}{(9.9047-j 29.8725)+(10+j 226.2)}\right) \cdot 28.2033 V_{p p} \\
& V_{2}(A C)=4.4980 V_{p p}
\end{aligned}
$$



Signal at V1 (blue) and it's Fourier approximation inluding the DC and 120 Hz term (only)

Just for fun, go out to the 20th harmonic (not asked for)

```
>> C = zeros(20,1);
>> for n=1:20
    C(n) = 2*mean(V1 .* exp(-j*2*n*t));
    end
>> bar(abs(C))
>> DC = mean(V1)
```



Magnitude of Each Harmonics ( $\mathrm{n}=1 . .20$ )

```
>> y = DC;
>> for n=1:20
y = y + real(C(n))*\operatorname{cos(2*n*t) - imag(C(n))*sin(2*n*t);}
end
plot(t,V1,t,y)
```



Fouier Series Approximation taken out to 20 terms
6) Change this circuit so that

- The voltge at V 2 is 9.00 V (DC)
- With a ripple of 1.00 Vpp

For the DC votlage to be 9.00 V

$$
\begin{aligned}
& V_{2}(D C)=\left(\frac{100}{100+10}\right) V_{1}(D C) \\
& V_{1}(D C)=9.90 V \\
& 9.90 V=\frac{2}{\pi} \cdot 20 V \cdot \cos (\theta)-1.4
\end{aligned}
$$

$$
\theta=27.4392^{\circ}
$$

AC:

$$
V_{1}(A C) \approx 20 V \cdot(1+\sin (\theta))=29.2162 V_{p p}
$$

More accurate - use the Fourier series:

```
>> t = [0:0.0001:1]' * pi + (27.4392/180)*pi;
>> V1 = 20*sin(t) - 1.4;
>> DC = mean(V1)
DC = 9.8989
>> AC = 2*mean(V1 .* exp(-j*t*2))
AC = -10.7317 + 1.6612i
>> V1pp = 2*abs(AC)
V1pp = 21.7191
```

Now find C 2 . Assuming $\mathrm{C}=02$, the ripple at V 2 will be

$$
\begin{aligned}
& V_{2}=\left(\frac{100}{100+(10+j 226.2)}\right) \cdot 21.719 V_{p p} \\
& \left|V_{2}\right|=8.6348 V_{p p}
\end{aligned}
$$

Pick C2 to be $1 / 8.63 \times 100$ Ohms

$$
\begin{aligned}
& \left|\frac{1}{j \omega C_{2}}\right|=\left(\frac{1 V_{p p}}{8.6348 V_{p p}}\right) 100 \Omega=11.581 \Omega \\
& C_{2}=114.5 \mu F
\end{aligned}
$$

## Boolean Logic:

7) Design a circuit to implement $Y$ using NAND gates

NAND gates: Circle the ones

| Y(A,B,C,D) |  | CD |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 00 | 01 | 11 | 10 |
| AB | 00 | 1 | 0 | 0 | x |
|  | 01 | 1 | 0 | X | 1 |
|  | 11 | 1 | ( $x$ | 1 | 0 |
|  | 10 | 0 | 1 | x | 0 |

$$
Y=\bar{A} \bar{D}+A D+A B \bar{C}
$$

Impliement this with an/or gates
Add double negatives to make these NAND gates

8) Design a circuit to implement $Y$ using NOR gates

- Circle the zeros

| Y(A,B,C,D) |
| :--- |
|  |
|  |
| AB 00 |
| 00 | | 1 | 0 | 0 | $x$ |
| :---: | :---: | :---: | :---: |
| 11 | 1 | $x$ | 1 |
| 10 | 0 | 1 | $x$ |

$$
\bar{Y}=\bar{A} D+A C \bar{D}+A \bar{B} \bar{D}
$$

Use DeMorgan's law

$$
Y=(A+\bar{D})(\bar{A}+\bar{C}+D)(\bar{A}+B+D)
$$

Implement using AND/OR gates. Add double negatives to make these NOR gates


