ECE 320 - Homework \#9

MOSFET Switches, CMOS logic. Due Monday, March 20th
Please email to jacob.glower@ndsu.com, or submit as a hard copy, or submit on BlackBoard

MOSFETs

1) The VI characteristics for an n-channel MOSFET are shown below.

- Label the off / ohmic / and saturated regions
- Determine the transconductance gain, kn. Assume Vth $=1.00 \mathrm{~V}$
kn Calculations: Point A (Ohmic Region)
$I_{d s}=k_{n}\left(V_{g s}-V_{t h}-\frac{V_{d s}}{2}\right) V_{d s}$
$10 m A=k_{n}\left(5 V-1 V-\frac{2 V}{2}\right) 2 V$
$k_{n}=1.667 \frac{\mathrm{~mA}}{V^{2}}$
Point B (Saturated Region)

$$
I_{d s}=\frac{k_{n}}{2}\left(V_{g s}-V_{t h}\right)^{2}
$$

$$
29 m A=\frac{k_{n}}{2}(7 V-1 V)^{2}
$$

$$
k_{n}=1.611 \frac{m A}{V^{2}}
$$

2) Draw the load-line for the circuit below. From the load line, determine the Q-point (Vds, Ids) when
$\mathrm{A}: \mathrm{Vg}=0 \mathrm{~V}$
$\mathrm{Vds}=10 \mathrm{~V}, I d s=0 \mathrm{~mA}$
Off Region
$\mathrm{Vg}=4 \mathrm{~V}$
$\mathrm{Vds}=7 \mathrm{~V}, \mathrm{Ids}=7.5 \mathrm{~mA}$
Saturated Region
$\mathrm{Vg}=7 \mathrm{~V}$
$\mathrm{Vds}=2.4 \mathrm{~V}, \quad \mathrm{Ids}=18 \mathrm{~mA}$
Ohmic Region

MOSFET Switch

The characteristics for a IRF3710 MOSFET are

- Max Current $=57 \mathrm{~A}$ continuous (180A pulsed)
- $\mathrm{Rds}=0.023 \mathrm{Ohms} @ 6 \mathrm{Vgs}=10 \mathrm{~V} @ \mathrm{Id}=28 \mathrm{~A}$
- $2 \mathrm{~V}<\mathrm{V}$ th $<4 \mathrm{~V}$ assume Vth $=3 \mathrm{~V}$

3) Determine the transconductance gain, kn

Rds is given in the Ohmic region

$$
\begin{aligned}
& I_{d s}=k_{n}\left(V_{d s}-V_{t h}-\frac{V_{d s}}{2}\right) V_{d s} \\
& V_{d s}=28 A \cdot 0.023 \Omega=0.644 \mathrm{~V} \\
& 28 A=k_{n}\left(10 \mathrm{~V}-3 \mathrm{~V}-\frac{0.644 \mathrm{~V}}{2}\right) \cdot 0.644 \mathrm{~V} \\
& k_{n}=5.663 \frac{A}{V^{2}} \quad \mathrm{Vth}=2 \mathrm{~V} \\
& k_{n}=6.511 \frac{A}{V^{2}} \quad \mathrm{Vth}=3 \mathrm{~V} \\
& k_{n}=7.657 \frac{A}{V^{2}} \quad \mathrm{Vth}=4 \mathrm{~V}
\end{aligned}
$$

4) The CircuitLab model for an IRF3710 MOSFET is

- $k=48.1147 \frac{A}{V^{2}}$
- $V_{t h}=3.39715 \mathrm{~V}$

Using the CircuitLab parameters, determine the voltages for the following circuit for

- $\operatorname{Vin}=\mathrm{Vg}=0 \mathrm{~V}$
- $\mathrm{Vin}=\mathrm{Vg}=5 \mathrm{~V}$
- $\mathrm{Vin}=\mathrm{Vg}=10 \mathrm{~V}$

Vin $=0 \mathrm{~V}$
Off region

$$
\begin{aligned}
& \mathrm{Vds}=10 \mathrm{~V} \\
& \mathrm{Ids}=0 \mathrm{~mA}
\end{aligned}
$$

Vin $=5 \mathrm{~V}$
Assume saturated region

$$
\begin{aligned}
& I_{d s}=\frac{k_{n}}{2}\left(V_{g s}-V_{t h}\right)^{2} \\
& I_{d s}=\frac{48.1147 \frac{A}{V^{2}}}{2}(5 \mathrm{~V}-3.39715 \mathrm{~V})^{2} \\
& I_{d s}=61.806 \mathrm{~A} \\
& V_{d s}=10-8 I_{d s}=-484.45 \mathrm{~V}
\end{aligned}
$$

which is nonsense - meaning it's not in the saturated region. Assume Ohmic region. Write two equations for two unknowns.

$$
\begin{aligned}
& I_{d s}=k_{n}\left(V_{g s}-V_{t h}-\frac{V_{d s}}{2}\right) V_{d s} \\
& 10=8 I_{d s}+V_{d s}
\end{aligned}
$$

Solving using numerical methods
$\mathrm{Vds}=0.0163 \mathrm{~V}$
Ids $=1.2480 \mathrm{~A}$
Check:
Vds $<$ Vgs - Vth
$0.0163 \mathrm{~V}<5 \mathrm{~V}-3.39715 \mathrm{~V}$
$\mathrm{Vgs}=10 \mathrm{~V}$
Also Ohmic region

$$
\begin{aligned}
& \mathrm{Vds}=0.0039 \mathrm{~V} \\
& \mathrm{Ids}=1.2495 \mathrm{~A}
\end{aligned}
$$

5) Simulate this circuit in CircuitLab using an IRF3710. Determine the voltages and currents when

- $\operatorname{Vin}=\mathrm{Vg}=0 \mathrm{~V}$
- $\mathrm{Vin}=\mathrm{Vg}=5 \mathrm{~V}$
- $\mathrm{Vin}=\mathrm{Vg}=10 \mathrm{~V}$

Vgs		Vds	Ids	Rds
0 V	Calculated	10 V	0 mA	n / a
	Simulated	10 V	0 mA	n / a
5 V	Calcuated	16.3 mV	1.248 A	13.1 mOhm
	Simulated	37.30 mV	1.245 A	30.0 mOhm
10 V	Calculated	3.99 mV	1.2495 A	3.2 mOhm
	Simulated	24.95 mV	1.247 A	20.0 mOhm

CMOS Logic

6) Design a CMOS gate to implement the function: $\mathrm{Y}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$

Y(A,B,C,D)	CD			
	00	01	11	10
00	1	0	0	x
AB 01	1	0	x	1
11	1	x	1	0
10	0	1	x	0

Start with circling the ones or zeros. I prefer zeros, but either one works

$$
\bar{Y}=\bar{A} D+A \bar{B} \bar{D}+A C \bar{D}
$$

Use DeMorgan's law to get Y

$$
Y=(A+\bar{D})(\bar{A}+B+D)(\bar{A}+\bar{C}+D)
$$

Implement these using CMOS gates (series $=$ and, parallel $=$ or).

- Use $\sim Y$ for the n-channel MOSFETs (tied to ground)
- Use Y for the p-channel MOSFETs (tied to 5 V)

