
Boolean Logic

Boolean logic lives in a black-and-white world where everything is either true (logic 1) or false (logic 0).

There are other forms of logic, such as fuzzy logic, where things can be grey. That's for another course,

however.

Standard Boolean functions are as follows:

AND: Y is true of A and B are both true. It's false otherwise.

Symbol: ⋅

Truth Table:

A B Y = AB Y = AB

AND NAND

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

OR: Y is true if either A or B is true. Note that logical OR is different than the word 'or' in English,

which usually means A or B but not both. ("Either you or I are going to the store" means that we're not

both going to go.) Logical OR is more akin to the English term 'and/or'.

Symbol: +

Truth Table:

A B Y = A + B Y = A + B

OR NOR

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

NOT: Y = NOT A means that whatever A is, Y is the opposite.

Symbols: Not A is written as

A

~A

A'

There are a few other variations, such as

NOR: Not OR

NDSU Boolean Logic ECE 320

page 1 February 22, 2016

A B Y = A + B

0 0 1

0 1 0

1 0 0

1 1 0

DeMorgan's Theorem:

AB = A + B

A + B = A ⋅ B

Implementing Logic Using NAND Gates

To implement logic using NAND gates, you circle the ones.

For example, suppose you want to design a circuit to light up LED (a) for a 7-segment display

c

g

d

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

ce

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

c

d

e

f

g

a

b

d

e

f

a

b

c

d

e

f

g

Input = 4 digital signals (ABCD)

Output: 0 = light off, 1 = light on

Relationship:

If you represent the number as ABCD, then the value for ABCD on a Karnaugh map would be

Value of

ABCD

CD

00 01 11 10

AB

00 0 1 3 2

01 4 5 7 6

11 12 13 15 14

10 8 9 11 10

Filling in each entry with whether LED (a) is on to represent that number gives the following Karnough

map:

NDSU Boolean Logic ECE 320

page 2 February 22, 2016

Ya(ABCD) CD

00 01 11 10

AB

00 1 0 1 1

01 0 1 1 0

11 x x x x

10 1 1 x x

Circle the ones to generate Ya:

AB

CD

00

01

11

10

00 01 11 10

1 0 1 1

0 1 1 0

x x x x

1 1 x x

Y = A + BD + BD + BC

Implement this using AND and OR gates

A

B

D

B'

D

B'

C

Y
AND

AND

AND

OR

'

To convert to NAND gates, add in a double-negative

NDSU Boolean Logic ECE 320

page 3 February 22, 2016

A'

B

D

B'

D

B'

C

Y
NAND

NAND

NAND

NAND

'

Implementation of Ya using NAND gates

Implementation using NOR Gates

To use NOR gates, you circle the zeros. For example, repeat the previous design:

First, you circle the zeros to generate not Y

AB

CD

00

01

11

10

00 01 11 10

1 0 1 1

0 1 1 0

x x x x

1 1 x x

Y = ABCD + BD

Negate both sides to find Y

Y = ABCD + BD

Use DeMorgan's theorem:

AB = A + B

A + B = AB

to give

NDSU Boolean Logic ECE 320

page 4 February 22, 2016

Y = (A + B + C + D)(B + D)

Implement using OR and AND gates

A

B

C

D'

B'

D

Ya
AND

OR

OR

Add in a double-negative to turn these into NOR gates

A

B

C

D'

B'

D

Ya
NOR

NOR

NOR

Implementation of Ya using NOR gates

Summary:

You can implement any logic using NAND or NOR gates. The only difference is if you prefer circling

the ones (NAND) or zeros (NOR).

NDSU Boolean Logic ECE 320

page 5 February 22, 2016

