ECE 321: Handout \#4

A thermistor has a temperature - resistance relationship of

$$
R=1000 \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

Design a circuit which outputs

- 0 V at 0 C
- 10 V at +40 C
- Voltage is proportional to temperature for $0 \mathrm{C}<\mathrm{T}<+40 \mathrm{C}$

Solution

Assume a 1 k resistor.
At $0 C(Y=0 V)$

- $\mathrm{R}=3320.12 \mathrm{Ohms}$
- $X=\left(\frac{R}{R+1 k}\right) 10 \mathrm{~V}=7.6853 \mathrm{~V}$

At $+40 \mathrm{C}(\mathrm{Y}=10 \mathrm{~V})$

- $\mathrm{R}=533.66 \mathrm{Ohms}$
- $X=\left(\frac{R}{R+1 k}\right) 10 \mathrm{~V}=3.4797 \mathrm{~V}$

The output increases as X decreases

- Connect X to the minus input

The output is 0 V when $\mathrm{X}=7.68 \mathrm{~V}$

- Connect 7.68 V to the other input (plus)

The gain is

$$
\text { gain }=\left(\frac{\text { change in } \mathrm{Y}}{\text { change in } \mathrm{X}}\right)=\left(\frac{10 \mathrm{~V}-0 \mathrm{~V}}{7.6853 \mathrm{~V}-3.4797 V}\right)=2.3778
$$

- The resistor ratio is $2.3778: 1$

