ECE 321: Handout \#7

Active Filters

1) Find R and C so that the following filer has the transfer function

$$
Y=\left(\frac{1000}{(s+4)(s+10)(s+20)}\right) X
$$

2) Find R and C so that the following filter has the transfer function

$$
Y=\left(\frac{4000}{(s+10)\left(s^{2}+15 s+400\right)}\right) X
$$

1) Find R and C so that the following filer has the transfer function

$$
Y=\left(\frac{1000}{(s+4)(s+10)(s+20)}\right) X
$$

Write this as

$$
Y=\left(\frac{4}{s+4}\right)\left(\frac{10}{s+10}\right)\left(\frac{20}{s+20}\right)(1.25) X
$$

This is three cascaded RC filters along with an amplifier

$$
\begin{array}{lll}
\frac{1}{R_{1} C_{1}}=4 & \Rightarrow & C_{1}=250 \mu F \\
\frac{1}{R_{2} C_{2}}=10 & \Rightarrow & C_{2}=10 \mu F \\
\frac{1}{R_{3} C_{3}}=20 & \Rightarrow & C_{3}=0.5 \mu F \\
\text { gain }=1.25=1+\frac{R_{a}}{R_{b}} &
\end{array}
$$

2) Find R and C so that the following filter has the transfer function

$$
Y=\left(\frac{4000}{(s+10)\left(s^{2}+15 s+400\right)}\right) X
$$

Rewrite as

$$
Y=\left(\frac{10}{s+10}\right)\left(\frac{400}{\left(s+20 \angle 67.98^{0}\right)\left(s+20 \angle 67.98^{0}\right)}\right) X
$$

First stage is an RC filter

$$
\frac{1}{R_{1} C_{1}}=10 \quad \Rightarrow \quad C_{1}=10 \mu F
$$

Second stage: active low pass filter

$$
\begin{aligned}
& \frac{1}{R_{2} C_{2}}=\sqrt{400}=20 \quad C_{2}=0.5 \mu F \\
& 3-k=2 \cos \left(67.98^{0}\right) \\
& k=2.25 \\
& k=1+\frac{R_{a}}{R_{b}}
\end{aligned}
$$

The resulting filter has a DC gain of 2.25 (should be 1.00). Label the output 2.25Y (it's 2.25 times large than it should be)

