ECE 321: Handout \#16

Multi-Stage Amplifiers

Determine the 2-port model for a CE : CC amplifier

Solution:

By inspection

- Rin $=2 \mathrm{k}$
- $\mathrm{Ai}=0$

Rout:

- Tie V1 to ground
- Connect 1V to V3
- Compute the current

By voltage division, V2 is...

$$
\begin{aligned}
& V_{2}=\left(\frac{3 k}{3 k+2 k}\right) \cdot 0.8 \mathrm{~V} \\
& V_{2}=0.48 \mathrm{~V}
\end{aligned}
$$

I is then

$$
\begin{aligned}
& I=\left(\frac{1 V-0.48 \mathrm{~V}}{30}\right)=17.33 \mathrm{~mA} \\
& R_{\text {out }}=\frac{1 V}{17.33 \mathrm{~mA}}=57.69 \Omega
\end{aligned}
$$

Ao:

- Connect Vin to +1 V
- Compute Vout

Writing the votlage node equation at V2

$$
\begin{aligned}
& \left(\frac{V_{2}-(-100)}{3 k}\right)+\left(\frac{V_{2}-0.8 V_{3}}{2 k}\right)=0 \\
& V_{3}=0.95 V_{2}
\end{aligned}
$$

Substituting

$$
\begin{aligned}
& \left(\frac{V_{2}+100}{3}\right)+\left(\frac{V_{2}-0.8 \cdot 0.95 V_{2}}{2}\right)=0 \\
& V_{2}=-73.53 \mathrm{~V}
\end{aligned}
$$

Then

$$
V_{3}=0.95 V_{2}=-69.85
$$

The resulting 2-port model is then

