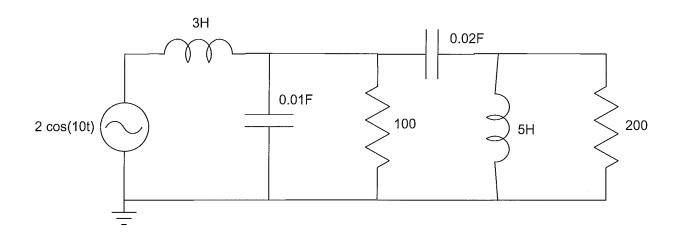
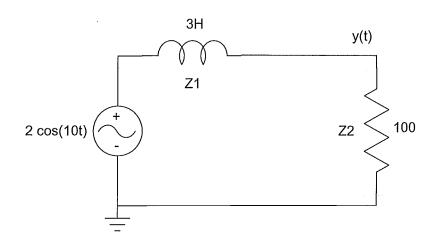
ECE 321 - Quiz 2: Name _

Phasors, Poles, Zeros, Frequency Response - November 19, 2015

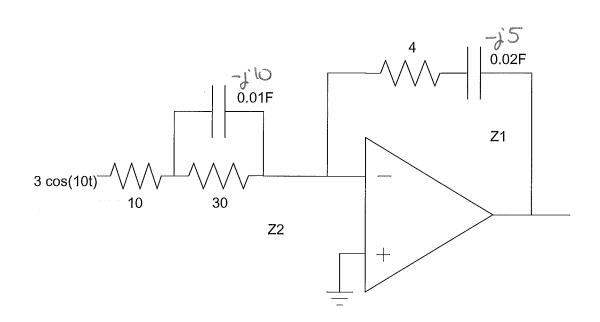

$$R \rightarrow R$$

$$L \rightarrow j\omega L$$

$$C \to \frac{1}{i\omega C}$$


1) Determine the phasor impedances for the following circuit for the input given

3H Inductor	0.01F Capacitor	100 Ohm resistor	0.02F Capacitor	5H Inductor
+ 30	-310	100	-35	350


2) Determine the phasor impedances of Z1 and Z2, the gain of the filter, and determine y(t) for the following circuit. (note: for voltage division, the gain is $\left(\frac{Z_2}{Z_1+Z_2}\right)$)

Z1		Z2	gain
j30		100	$\frac{100}{100+30} = .957/-16.79$
$y(t) = 1.915 \cos(10t - 16.7^{\circ})$)	

3) The gain of an inverting amplifier is $\left(\frac{-Z_1}{Z_2}\right)$. For the following op-amp circuit, determine the impedances at 10 rad/sec, the gain, and the output, y(t)

Z1	Z2	gain		
4-j5 6.401-51,3°	13-j9	.405 [163.3°		
$y(t) = \frac{1.214 \cos(10++163^{\circ})}{1.214 \cos(10++163^{\circ})}$				

4) A filter has the following transfer function

$$Y = \left(\frac{3s}{s^2 + 8s + 20}\right)X$$

Determine the gain of this filter at s = j6 as well as y(t) if $x(t) = 3 \cos(6t)$

Gain @ s = j6	$y(t) \text{ for } x(t) = 3 \cos(6t)$
.355 <u>/-18.4°</u>	1.067 cos (6t -18.4°)

5) A filter has the following transfer function

$$Y = \left(\frac{10}{(s+1)(s+3)}\right)X = \left(\frac{10}{s^2+4s+3}\right)X$$

5a) What is the differential equation relating X and Y?

$$y'' + 4y' + 3y = 10 \times$$

$$(s^2 + 4s + 3) Y = (10) X$$

5b) Find the input, x(t), assuming

$$y(t) = 3\cos(6t)$$

$$x(t) = 12.24 \cos(6t + 1430)$$

Colbert Trivia: When Acro-Cats came to the Colbert show, what happened?

- The cats got into a fight on-stage
- The cats hurled on the stage (stage nerves)
- The cats wouldn't come out of their cages and ignored their 'trainers'
- Colbert started sneezing uncontrollably (allergic to cats)
- · Two of the cats got away and clawed several audience guests