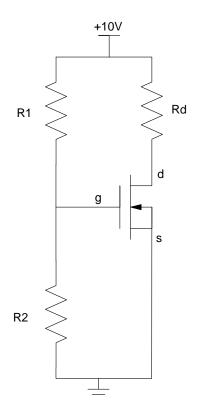
ECE 321 - Quiz 4: Name

MOSFET Amplifiers - December 10, 2015


- 1) MOSFET DC Analysis: Find Rd, R1, and R2 so that the Q-point for the following circuit is
 - Vds = 5V
 - Ids = 1mA

Assume

- Vth = 2.0V
- $k_n = \frac{1}{m}A/V^2$ $I_{ds} = \frac{k_n}{2}(V_{gs} V_{th})^2$

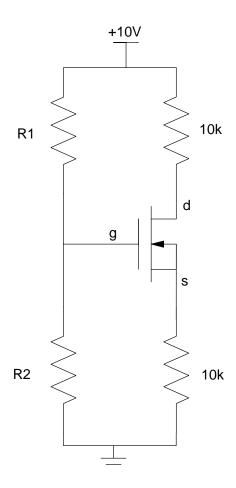
saturated region

R1	R2	Rd

2) To stabilize the Q-point for variations in the turn-on voltage, Rs is added. Find R1 and R2 so that the Q-point is

•
$$Vds = 5V$$

Assume

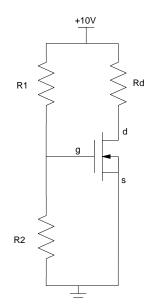

•
$$Vth = 2.0V$$

•
$$k_n = 1 mA/V^2$$

• Vth = 2.0V
•
$$k_n = 1mA/V^2$$

• $I_{ds} = \frac{k_n}{2}(V_{gs} - V_{th})^2$

saturated model

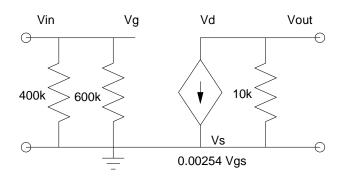

Ids	R1	R2

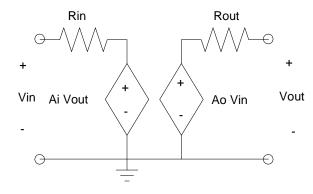
- 3) The V/I characteristics for a MOSFET are shown below along with a desired load-line.
 - Find Rd to give this load line
 - Find R1 and R2 so that the Q-point is (Vds = 5.5V, Ids = 36uA) and
 - $R1 \parallel R2 = 100k$

Assume Vth = 2V


Rd	R1	R2

- 4) Draw the small-signal model for the following amplifier. Assume the small-signal model for the MOSFET is


 - $k_n = 1mA/V^2$ $g_m = 0.002.54 \frac{A}{V^2}$



MOSFET Small Signal Model \oplus 0.00254 Vgs

5) Find the 2-port model for the following MOSFET amplifier

Rin	Ai	Rout	Ao

