ECE 321 - Homework \#3

Filters, 2-port models. Due Monday, November 23rd

1) Give the transfer function for a filter which meets the following requirements

- $\mathrm{w}<100 \mathrm{rad} / \mathrm{sec}$
Gain > 0.9
- $\mathrm{w}>500 \mathrm{rad} / \mathrm{sec}$

Gain <0.1

There are multiple solutions. One what works:
Filter Order:

$$
\begin{aligned}
& \left(\frac{100}{300}\right)^{n}<0.1 \\
& n>2.09
\end{aligned}
$$

Assume a 3rd order filter.
Filter Type: Choose a Butterworth low pass filter (corner = 100 as a first guess)

$$
G(s)=\left(\frac{100^{3}}{(s+100)\left(s+100 \angle 60^{\circ}\right)\left(s+100 \angle-60^{\circ}\right)}\right)
$$

Filter Corner: Adjust in SciLab until it meets the specs

Corner	Gain at 100	Gain at 300
100	0.71	0.037
120	0.865	0.063
130	0.910	0.081

2) Verify that your filter meets these reqirements in MATLAB (or like program)
```
-->j = sqrt(-1);
-->s1 = -130;
-->s2 = -130*exp(j*60*%pi/180)
-->s3 = -130*exp(-j*60*%pi/180)
-->w = [0:500]';
-->s = j*w;
-->G = 130^3 ./ ( (s-s1) .* (s-s2) .* (s-s3) );
-->plot(w,abs(G),'b');
-->xlabel('rad/sec');
-->ylabel('gain');
-->plot([0,100,100],[0.9,0.9,0],'r');
-->plot([300,300,500],[1,0.1,0.1],'r');
```


3) Design an op-amp circuit to impliment your filter.

$$
\frac{1}{R C}=130
$$

Let

$$
\begin{aligned}
& \mathrm{R}=100 \mathrm{k}, \quad \mathrm{C}=76.9 \mathrm{nF} \\
& 3-k=2 \cos \left(60^{0}\right) \\
& \mathrm{k}=2=1+\mathrm{R} 1 / \mathrm{R} 2
\end{aligned}
$$

Let

$$
\mathrm{R} 1=\mathrm{R} 2=100 \mathrm{k}
$$

note: This filter has a DC gain of 2 (vs 1). You can reduce the gain with a voltage divider - or just incorporate that extra gain of 2 elsewhere.
4) Give the transfer function for a filter which meets the following requirements

- $90<\mathrm{w}<110 \mathrm{rad} / \mathrm{sec}$
Gain > 0.9
- $\mathrm{w}<50 \mathrm{rad} / \mathrm{sec}$
Gain <0.1
- $\mathrm{w}>150 \mathrm{rad} / \mathrm{sec}$
Gain < 0.1

The center frequency $=100 \mathrm{rad} / \mathrm{sec}$, meaning the complex part of the pole should be $100 \mathrm{rad} / \mathrm{sec}$

The bandwidth is $10 \mathrm{rad} / \mathrm{sec}$, so let the real part be 10

1st Attempt: Single Pole
Try a single pole at $-10+\mathrm{j} 100$:
$\mathrm{s}=-10+\mathrm{j} 100$
$G(\mathrm{~s})=\left(\frac{20 \mathrm{~s}}{(\mathrm{~s}+10+j 100)(\mathrm{s}+10-\mathrm{j} 100)}\right)$

W
(10+j100 reject

```
-->s1 = -10*exp(j*45*%pi/180) + j*100
-->s2 = -10*exp(-j*45*%pi/180) + j*100
-->s3 = conj(s1)
-->s4 = conj(s2)
-->w = [0:0.1:200]';
-->s = j*W;
-->G = s ./ ( (s-s1) .* (s-s2) .* (s-s3) .* (s-s4) );
-->max(abs(G))
    0.0000250
-->k = 1/ans
    40000.125
-->G = k*G;
-->plot(w,abs(G))
-->plot([0,50,50],[0.1,0.1,1],'r');
-->plot([150,150,300],[1,0.1,0.1],'r');
- ->plot([150,150,200],[1,0.1,0.1],'r');
-->plot([90,90,110,110],[0,0.9,0.9,0],'r');
```


$$
G(s)=\left(\frac{40,000 s}{\left(s+10 \angle 45^{0}+j 100\right)\left(s+10 \angle-45^{0}+j 100\right)\left(s+10 \angle 45^{0}-j 100\right)\left(s+10 \angle-45^{0}-j 100\right)}\right)
$$

3rd Attempt: Try a wider bandwitch with poles at 15

```
-->s1 = -15*exp(j*45*%pi/180) + j*100;
-->s2 = -15*exp(-j*45*%pi/180) + j*100;
-->s3 = conj(s1)
-->s4 = conj(s2);
-->G = s./ ( (s-s1) .* (s-s2) .* (s-s3) .*
(s-s4));
-->k = 1 / max(abs(G))
    90001.424
-->G = G*k;
-->plot(w,abs(G))
-->plot([90,90,110,110],[0,0.9,0.9,0],'r');
-->plot([150,150, 200],[1,0.1,0.1],'r');
- ->plot([0,50,50],[0.1,0.1,1],'r');
```


$$
\text { (} G(S)=(
$$

5) Verify that your filter meets these reqirements in MATLAB (or like program)
see above
6) Design an op-amp circuit to impliment your filter.

$$
\begin{aligned}
& G(s)=\left(\frac{90,000 s}{\left(s+111.11 \angle \pm 84.522^{0}\right)\left(s+90.02 \angle \pm 83.23^{0}\right)}\right) \\
& G(s)=\left(\frac{4.018 s}{s+111.11 \angle \pm 84.522^{0}}\right)\left(\frac{2.764 \cdot 90.02^{2}}{s+90.02 \angle \pm 83.23^{0}}\right) \\
& G(s)=\left(\frac{4.018 s}{s^{2}+21.21 s+12,345}\right)\left(\frac{2.764 \cdot 90.02^{2}}{s+90.02 \angle \pm 83.23^{0}}\right)
\end{aligned}
$$

Stage 1:

$$
\begin{array}{rl}
\left(\frac{1}{R_{1} C}\right) & =4.018 \\
\mathrm{C}=1 \mathrm{uF} & \mathrm{R} 1=248 \mathrm{k} \\
\left(\frac{2}{R_{3} C}\right) & =21.21 \\
\mathrm{C}=1 \mathrm{uF}, \quad \mathrm{R} 3=94.3 \mathrm{k} \\
\left(\frac{R_{1}+R_{2}}{R_{1} R_{2}}\right)\left(\frac{1}{R_{3} C^{2}}\right)=12,345
\end{array}
$$

$$
\text { R2 }=861
$$

Stage 2:

$$
\begin{aligned}
& \left(\frac{1}{R C}\right)=90.02 \\
& \quad \mathrm{R}=100 \mathrm{k} \quad \mathrm{C}=0.111 \mathrm{uF} \\
& 3-k=2 \cos \left(83.23^{0}\right)
\end{aligned}
$$

$$
\mathrm{k}=2.76=1+\mathrm{R} 1 / \mathrm{R} 2
$$

Problem 4-6
7) Give a 2-port model for the following circuit

Rin: Short Vout, measure the resistance looking in
$R_{\text {in }}=100+400 \| 500$
$R_{\text {in }}=222$
Ai \quad Set Vout $=1 \mathrm{~V}$, measure Vin
$A_{i}=\left(\frac{500}{500+400}\right)=0.555$
Rout: Short Vin, measure the resistance at the output
$R_{\text {out }}=400+100 \| 500$
$R_{\text {out }}=483$
Ao: \quad Set Vin $=1 \mathrm{~V}$, measure Vout
$A_{o}=\left(\frac{500}{500=100}\right)=0.833$

8) Give a 2-port model for the following circuit

Rin: \quad Set Vout $=0 \mathrm{~V}$, measure the resistance at the input
$R_{\text {in }}=10 k| | 30 k \| 2 k$
$R_{\text {in }}=1579 \Omega$
Ai: Set Vout $=1 \mathrm{~V}$, measure the voltage at the input

$$
A_{i}=\left(\frac{10 k \| 30 k}{10 k \| 30 k+2 k}\right)=0.7895
$$

Rout: Set Vin $=0 \mathrm{~V}$, measure the resistance at the output. This isn't obvious, so apply a 1 V test voltage and measure the current
$I=\frac{1}{500}+\frac{1}{2 k}+100\left(\frac{1}{2 k}\right)=52.5 \mathrm{~mA}$
$R_{\text {out }}=\frac{V}{I}=\frac{1 V}{52.5 m A}=19.04 \Omega$
Ao: \quad Set Vin $=1 \mathrm{~V}$, measure Vout. This isn't obvious so use voltage nodes
$\left(\frac{V_{\text {out }}-1}{2 k}\right)-100\left(\frac{1-V_{\text {out }}}{2 k}\right)+\left(\frac{V_{\text {out }}}{500}\right)=0$
$V_{\text {out }}=A_{o}=0.9619$

