ECE 321 - Homework \#4

BJT Amplifiers, CE Amplifier. Due Monday, November 30th
Assume a BJT transistor with a gain of 100

DC Analysis

1) Determine the Q-point for the following circuit.

Redraw the circuit

Write the loop equation around Ib:

$$
-2+16667 I_{b}+0.7+1000\left(I_{b}+\beta I_{b}\right)=0
$$

$$
I_{b}=11.05 \mu A
$$

then

$$
I_{c}=\beta I_{b}=1.105 \mathrm{~mA}
$$

and the Q-point is

$$
\begin{aligned}
& V_{c}=12-3 k \cdot I_{c}=8.686 \mathrm{~V} \\
& V_{e}=\left(I_{b}+I_{c}\right) 1 \mathrm{k}=1.116 \mathrm{~V} \\
& V_{c e}=V_{c}-V_{e}=7.57 \mathrm{~V}
\end{aligned}
$$

2) Change R1 and R2 so that

- The Q -point is stabilized for variations in β
- The Q point is Vce $=6 \mathrm{~V}$

Going backwards, if Vce $=6 \mathrm{~V}$

$$
\begin{aligned}
& (12 V-6 V)=3 k \cdot I_{c}+1 k \cdot\left(I_{b}+I_{c}\right) \\
& I_{c}=\frac{6 V}{3 k+1.01 k}=1.496 \mathrm{~mA} \\
& I_{b}=\frac{I_{c}}{\beta}=14.96 \mu \mathrm{~A}
\end{aligned}
$$

To stabilize the Q-point

$$
\begin{aligned}
& (1+\beta) R_{e} \gg R_{b} \\
& 101 \mathrm{k} \Omega \gg R_{b}
\end{aligned}
$$

Let

$$
\begin{aligned}
& R_{b}=10 k \\
& V_{b b}=0.7 V+R_{b} I_{b}+R_{e}\left(I_{b}+I_{c}\right) \\
& V_{b b}=2.361 V
\end{aligned}
$$

Converting back to R1 and R2

$$
\begin{aligned}
& R_{1} \| R_{2}=10 k \\
& \left(\frac{R_{2}}{R_{1}+R_{2}}\right) 12 V=2.361 V \\
& R_{1}=\left(\frac{12 V}{2.361 V}\right) 10 k=50.83 k \\
& R_{2}=12.45 k
\end{aligned}
$$

AC Analysis

3) Assume all capacitors are large $\left(\frac{1}{j \omega C} \ll 1 k\right)$. Determine the 2-port model for this circuit

$$
r_{f}=\frac{0.052 \mathrm{~V}}{I_{b e}}=\frac{0.052 \mathrm{~V}}{11.05 \mu \mathrm{~A}}=4706 \Omega
$$

Redraw the circuit (show on left)

Rin:

$$
\begin{aligned}
& \operatorname{Rin}=20 \mathrm{k}| | 100 \mathrm{k}| | 4706 \\
& \operatorname{Rin}=3670
\end{aligned}
$$

$\mathrm{Ai}=0$ by inspection

Rout:
Set Vin $=0 \mathrm{~V}$
$100 \mathrm{Ib}=0$
Rout $=3 \mathrm{k}$

Aout:
Set Vin $=1 \mathrm{~V}$
$I_{b}=\frac{1 V}{4706 \Omega}=212 \mu \mathrm{~A}$
$100 I_{b}=21.25 \mathrm{~mA}$
$V_{\text {out }}=-3000 \cdot I_{c}=-63.75 \mathrm{~V}$
4) Determine the 2-port model for this circuit when Ce is removed

Rin: Short Vout, apply 1V at Vin, determine the current

$$
\begin{aligned}
& I_{i n}=\frac{1}{20 k}+\frac{1}{100 k}+\frac{1}{4706+101 k} \\
& R_{i n}=20 k| | 100 k| |(4706+101 k) \\
& R_{i n}=14.4 k
\end{aligned}
$$

$\mathrm{Ai}=0$

Rout: Short Vin

$$
\mathrm{Vb}=0
$$

$\mathrm{Ve}=0$
$\mathrm{Ib}=100 \mathrm{Ib}=0$
Rout $=3 \mathrm{k}$
Ao: Apply 1V at Vin
$I_{b}=\frac{1}{4706+101 k}=9.46 \mu \mathrm{~A}$
$I_{c}=100 I_{b}=946 \mu A$
$V_{o}=-3000 I_{c}=-2.38 \mathrm{~V}$

ECE 321 - Homework \#5 \& \#6

Term project (part 1). Due Monday, December 7th
Term project (part 1). Due Monday, December 7th
Term Project Requirements

- Must have two sections
- Must have analog signals (can take on any value between Vmin and Vmax)
- Must demonstrate knowledge of ECE 321 Electronics II

	HW 5: Section 1 Due Monday, December 7th	HW 6: sSection 2 Dut Monday December 14th
1) Requirements (20pt) Specify the requirements for the first section of your device. - Input Voltage range, current capability, frequency range - Output Voltage range, current capability - Relationship: What this section does (a picture is useful if it's a filter)		
2) Analysis (40pt) Computations for resistor and capacitor values. - Calculate the voltages at a few points (frequencies, temperatures, light levels). This allows you to compare calculations to simulations to lab - Matlab plots if its a filter to show you meet the requirements.		
3) Test / Simulation Results (20pt) - Simulate your circuit in PartSim or similar program - Check the gain at a few frequencies to compare to your calculations		
4) Validation (20pt) Lab Results Build your circuit in lab - Take measurements at a few frequencies - Compare your lab data to simulation data to computations. - Does the circuit behave as expected?		
Total (100pt)		

