ECE 321: Final Exam Name

December 13, 2016

1) Determine the voltages and currents for the following push-pull amplifier with a +2 V input. Assume

- $\beta=100$
- $V_{b e}=0.7 \mathrm{~V}$

	V2	Ib	Ic

2) Determine the voltages and currents for the following circuit. Assume

- $\beta=100$
- $V_{b e}=0.7 \mathrm{~V}$
- $V_{f}=3.0 \mathrm{~V}$ (a white LED)

Ib	Ic	Vc	Ve

3) Find R and C so the the following amplfier has the following transfer function
$Y=\left(\frac{1000}{s^{2}+10 s+300}\right) X$

R	C	R1	R2	R3	R4

$$
\begin{aligned}
& Y=\left(\frac{k\left(\frac{1}{R C}\right)^{2}}{s^{2}+\left(\frac{3-k}{R C}\right) s+\left(\frac{1}{R C}\right)^{2}}\right) X \\
& k=1+\frac{R_{2}}{R_{1}}
\end{aligned}
$$

4) BJT and Load Lines: Determine the voltages and currents for the following circuit. Also draw the load line and show the Q-point on the load-line. Assume $\beta=100$

Ib	Ic	Vc	Ve	Load Line \& Q-Point
				show on graph

5) Find R1 and R2 so that

- The Q-point is stabilized for variations of $\beta\left((1+\beta) R_{e} \gg R_{b}\right)$ and
- $V c e=6.0 \mathrm{~V}$

Assume $\beta=100$

R1	R2	Vb	Rb

6) Draw the small-signal model for the following amplifier. Assume

- $\beta=100$
- $r_{f}=1500 \Omega$

7) Determine the 2-port model for the following amplifier

Rin	Ai	Rout	Ao

Bonus! If the electorial college refuses to elect either Trump or Clinton, who determines who is our next President?

