ECE 321: Final Exam Name

December 13, 2016

- 1) Determine the voltages and currents for the following push-pull amplifier with a +2V input. Assume
 - $\beta = 100$
 - $V_{be} = 0.7V$

V1	V2	Ib	Ic

2) Determine the voltages and currents for the following circuit. Assume

•
$$\beta = 100$$

•
$$V_{be} = 0.7V$$

•
$$V_{be} = 0.7V$$

• $V_f = 3.0V$ (a white LED)

Ib	Ic	Vc	Ve

3) Find R and C so the the following amplfier has the following transfer function

$$Y = \left(\frac{1000}{s^2 + 10s + 300}\right) X$$

R	С	R1	R2	R3	R4

$$Y = \left(\frac{k\left(\frac{1}{RC}\right)^2}{s^2 + \left(\frac{3-k}{RC}\right)s + \left(\frac{1}{RC}\right)^2}\right)X$$

$$Z = \left(1 + \frac{R_3}{R_4}\right)Y$$

$$k = 1 + \frac{R_2}{R_1}$$

4) BJT and Load Lines: Determine the voltages and currents for the following circuit. Also draw the load line and show the Q-point on the load-line. Assume $\beta=100$

Ib	Ic	Vc	Ve	Load Line & Q-Point
				show on graph

5) Find R1 and R2 so that

- The Q-point is stabilized for variations of β $((1+\beta)R_e>>R_b)$ and
- Vce = 6.0V

Assume $\beta = 100$

R1	R2	Vb	Rb

- 6) Draw the small-signal model for the following amplifier. Assume
 - $\beta = 100$
 - $r_f = 1500\Omega$

7) Determine the 2-port model for the following amplifier

Rin	Ai	Rout	Ao

Bonus! If the electorial college refuses to elect either Trump or Clinton, who determines who is our next President?