ECE 321 - Homework \#1

Op-Amps, Instrumentation Amplifiers. Due Monday, October 31st

Assume ideal op-amps.

1) Design an op-amp circuit with a gain of +3 .

There are many solutions. One that works is:

2) Design an op-amp circuit with a gain of -3

There are many solutions. One that works is:

3) Design an op-amp circuit to implement the funciton

$$
Y=2 X+3
$$

Rewrite as

$$
Y=2\left(X-\left(-\frac{3}{2}\right)\right)
$$

4) Design a circuit which meets the following requirements

Input: 3 voltages (A, B, C), each $\pm 5 \mathrm{~V}, 0-10 \mathrm{kHz}$, capable of driving 10 mA
Output: Y: $\pm 5 \mathrm{~V}$, capable of driving 10 mA
Relationship: $\mathrm{Y}=2 \mathrm{~A}+3 \mathrm{~B}+4 \mathrm{C}$
The input resistors need to be more than

$$
R_{i n}>\frac{5 V}{10 m A}=500 \Omega
$$

Solution Based upon Non-Inverting Amplifiers:

Solution using inverting amplifiers.
5) Design a circuit which meets the following requirements:

Input: Thermistor

$$
R=1000 \cdot e^{-0.05(T-25)} \Omega
$$

Output: Y, 0 .. 10V signal, capable of driving 10 mA
Relationship:

- At 0C, $\mathrm{Y}=0 \mathrm{~V}$
- At 10C, $\mathrm{Y}=10 \mathrm{~V}$
- Y is proportional to temeprature for $0 \mathrm{C}<\mathrm{T}<10 \mathrm{C}$

At 0C

$$
\mathrm{R}=3490 \text { Ohms }
$$

At 10C

$$
\mathrm{R}=2117 \text { Ohms }
$$

Use a voltage divider with Rtop $=2700$ Ohms (the geometric mean of 0C and 10C).

$$
R_{t o p}=\sqrt{3490 \cdot 2117}=2718 \Omega
$$

Then, at 0C

$$
V_{a}=\left(\frac{3490}{3490+2700}\right) 10 \mathrm{~V}=5.638 \mathrm{~V}
$$

At 10C

$$
V_{a}=\left(\frac{2117}{2117+2700}\right) 10 \mathrm{~V}=4.3949 \mathrm{~V}
$$

For the output to have a spread of 10 V , the gain needs to be

$$
\text { gain }=\left(\frac{10 V-0 V}{4.3949 V-5.638 V}\right)=-8.04
$$

The output increases when the input decreases (negative gain) so connect the divider to the - input.
The output is 0 V when the input is 5.638 V . Set the offset to 5.638 V

In Matlab (not required)
$-->T=[0: 0.01: 10]^{\prime} ;$
$-->R=1000^{*} \exp \left(-0.05^{*}(T-25)\right) ;$
$-->V a=(R . /(2700+R)) * 10 ;$
-->gain = 8.04;
-->Offset $=5.638$;
$-->Y=$ gain*(Offset - Va);
-->plot(T,Y)
-->xlabel('Temperature (C)');
-->ylabel('Y (Volts)');

