ECE 321 - Homework \#4

Filters. Due Monday, November 21th

1) Assume you have a filter

$$
Y=\left(\frac{2 s+10}{s^{2}+20 s+100}\right) X
$$

a) What is the differential equation relating X and Y ?

Cross Multiply

$$
\left(s^{2}+20 s+100\right) Y=(2 s+10) X
$$

which means

$$
\frac{d^{2} y}{d t^{2}}+20 \frac{d y}{d t}+100 y=2 \frac{d x}{d t}+10 x
$$

b) Determine $\mathrm{y}(\mathrm{t})$ assuming

$$
x(t)=2+3 \cos (4 t)
$$

Use superposition:

$$
\begin{aligned}
& x(t)=2 \\
& \quad \mathrm{~s}=0 \\
& \left(\frac{2 s+10}{s^{2}+20 s+100}\right)_{s=0}=0.1 \\
& y=(0.1) \cdot 2 \\
& y=0.2 \\
& \mathrm{x}(\mathrm{t})=3 \cos (4 \mathrm{t}) \\
& \mathrm{s}=\mathrm{j} 4 \\
& \left(\frac{2 s+10}{s^{2}+20 s+100}\right)_{s=j 4}=0.1104 \angle-4.94^{0} \\
& y=\left(0.1104 \angle-4.94^{0}\right) \cdot 3 \cos (4 t) \\
& y=0.3312 \cos \left(4 t-4.94^{0}\right)
\end{aligned}
$$

Add the two inputs to get $\mathrm{x}(\mathrm{t})$
Add the two outputs to get $\mathrm{y}(\mathrm{t})$

$$
y=0.2+0.3312 \cos \left(4 t-4.94^{0}\right)
$$

Design a filter for your light to sound circuit.
2) Requirements: Specify the requirements. For example,

Input: -10 V to +10 V analog, capable of $20 \mathrm{~mA}, 0$ to 10 kHz
Output: -10 V to +10 V analog, capable of 20 mA
Relationship: (Low-Pass Filter)

- $0.9<$ Gain $<1.1 \quad \mathrm{f}<250 \mathrm{~Hz}$
- Gain $<0.2 \mathrm{f}>750 \mathrm{~Hz}$

3) Analysis: Design a filter (i.e. give the transfer function) for a filter which meets your design specs.

The number of poles you need are:

$$
\begin{aligned}
& \left(\frac{250 \mathrm{~Hz}}{750 \mathrm{~Hz}}\right)^{n}=0.2 \\
& n=1.46
\end{aligned}
$$

You need at least 1.46 poles to meet this requirement. Let $\mathrm{n}=3$
Choosing a Chebychev filter with a corner at 250 Hz :

```
-->p1 = 250*2*pi* 1.21*exp(j*69.5*pi/180)
    665.62641 + 1780.2987i
-->p2 = conj(p1)
    665.62641 - 1780.2987i
-->p3 = 250*2*pi * 0.85
    1335.1769
-->k = p1*p2*p3
    4.823D+09
-->Gs = k ./ ( (s + p1) .* (s + p2) .* (s + p3) );
-->plot(f,abs(Gs))
```

$$
G(s)=\left(\frac{4.823 \cdot 10^{9}}{(s+1335)\left(s+1900 \angle 69.5^{0}\right)\left(s+1900 \angle-69.5^{0}\right)}\right)
$$

a) Compute the gain of your filter at several points. For example, for the low-pass filter, compute the gain at $\{0 \mathrm{~Hz}, 250 \mathrm{~Hz}, 750 \mathrm{~Hz}, 2 \mathrm{kHz}\}$
$-->G=\operatorname{zpk}([],[-p 1,-p 2,-p 3], k)$
-->evalfr(G,0)
1.
-->abs(evalfr(G,j*250*\%pi*2))
0.9813375
-->abs(evalfr(G,j*750*\%pi*2))
0.0501830
-->abs(evalfr(G,j*1000*\%pi*2))
0.0203890
b) Plot the gain of your filter from 0 Hz to 1 kHz (or so) to verify it meets your requirements.

4) Design an op-amp circuit to implement your filter. Let $\mathrm{R}=100 \mathrm{k}$

$$
\left(\frac{1}{R C}\right)=1335
$$

$$
C=0.0075 \mu F
$$

$$
\left(\frac{1}{R C}\right)=1900
$$

$$
C=0.0053 \mu F
$$

$$
3-k=2 \cos \left(69.5^{0}\right)
$$

$$
k=2.23=1+\frac{R_{1}}{R_{2}}
$$

$$
\mathrm{R} 2=100 \mathrm{k}
$$

$$
\mathrm{R} 1=123 \mathrm{k}
$$

5) Simulation: Check your design in PartSim or similar programs at the same frequencies you computed in part 3.

	Calculated	Simulated	Measured
100 Hz	2.1924	2.209	-
250 Hz	2.1884	2.005	-
750 Hz	0.1119	0.106	-
1000 Hz	0.0455	0.044	-

6) Validation: Build a the op-amp circuit and measure the gain at the frequencies computed in part 3.

