ECE 321 - Homework \#6

CE / CC / CB Amplifiers. Due Monday, December 5th
1a) Draw the small signal model for the transistor circuit below connected in commom emitter (CE) configuration. note: From homework \#5, the Q-point is

$$
\begin{aligned}
& \mathrm{Ib}=15.33 \mathrm{uA} \\
& r_{f}=\frac{n V_{T}}{I_{b}}=3392 \Omega
\end{aligned}
$$

1b) Determine the 2-port model for this circuit in CE configuration.

$$
\begin{aligned}
& R_{\text {in }}=40 k| | 20 k| | 3392=2704 \Omega \\
& A_{i}=0 \\
& R_{\text {out }}=4 k \Omega \\
& A_{o}=-\frac{100 \cdot 4 k}{3392}=-118
\end{aligned}
$$

2a) Draw the small signal model for the transistor circuit below connected in commom base (CB) configuration.

2b) Determine the 2-port model for this circuit in CB configuration.

$$
\begin{aligned}
& R_{\text {in }}=2 k| | 3392| | \frac{3392}{100}=33 \Omega \\
& A_{i}=0 \\
& R_{\text {out }}=4 k \\
& A_{o}=+\frac{100 \cdot 4 k}{3392}=+118
\end{aligned}
$$

3a) Draw the small signal model for the transistor circuit below connected in commom collector (CC) configuration.

3b) Determine the 2-port model for this circuit in CC configuration.

$$
\begin{aligned}
& R_{\text {in }}=20 k| | 40 k| | 3392=2704 \Omega \\
& A_{i}=\left(\frac{20 k \| 40 k}{20 k \| 40 k+3392}\right)=0.7972 \\
& R_{\text {out }}=2 k\|3392\| \frac{3392}{100}=33 \Omega \\
& A_{o}: \quad\left(\frac{X-1}{3392}\right)+100\left(\frac{X-1}{3392}\right)+\left(\frac{X}{2 k}\right)=0 \\
& A_{o}=X=\left(\frac{\frac{101}{3932}}{\frac{101}{3392}+\frac{1}{2000}}\right)=0.9835
\end{aligned}
$$

4) Design a multi-stage amplifier using CE / CC / CB amplifiers to amplify a 1 uVpp signal to $>1 \mathrm{Vpp}$ at 8 Ohms.

Problem 1-4: BJT Circuit for CE / CC / CB Amplifiers. Beta $=100$
Stage 1: CE amplfier (high input R)
Stage n: CC Amplifier (low output R)
Combine into a CE:CC amplifier. The 2-port model is:

This simplifies to

$$
\begin{aligned}
& R_{\text {in }}=2704 \\
& A_{i}=0
\end{aligned}
$$

$$
A_{o}: \quad V_{2}=\left(\frac{2704}{2704+4 k}\right)(-118)+\left(\frac{4 k}{4 k+2704}\right)(0.7972)\left(0.9835 V_{2}\right)
$$

$$
V_{2}=-89.43
$$

$$
A_{o}=0.9835 V_{2}=-87.95
$$

$$
\begin{gathered}
R_{\text {out }}: V_{2}=\left(\frac{4 k}{4 k+2704}\right)(0.7972 V)=0.4757 V \\
I=\left(\frac{1-0.9835 V_{2}}{33}\right) \\
R_{\text {out }}=\left(\frac{33}{1-0.9835 V_{2}}\right)=62 \Omega
\end{gathered}
$$

Adding the input and output

One CE amplifier isn't enough. If you add more, each stage increases the gain by

$$
-118\left(\frac{2704}{2704+4 k}\right)=-47.59
$$

To get the output up to 1 V , you need to multiply the previous answer by -47.59 four times, resulting in an output of 37.66 V

Term Project: Select one part of your term progect. For this part, give
5) Requirements: Specify the inputs, outputs, and how they relate.
6) Analysis. Calculations for a circuit that meets your requirements.
7) Test: Simulate your circuit to check your analysis.
8) Validation: Build your circuit in lab and collect data to validate it meets your requirements.

