ECE 321 - Homework \#2

Active Filters. Poles, Zeros, Freqency Response. Due Monday, November 13th, 2017

1) For the following filter

$$
Y=\left(\frac{100}{(s+5)(s+10)}\right) X
$$

a) What is the differential equation relating X and Y ?

Cross multiply

$$
\begin{aligned}
& (s+5)(s+10) Y=(100) X \\
& \left(s^{2}+15 s+50\right) Y=100 X
\end{aligned}
$$

sY means the derivative of Y

$$
\frac{d^{2} y}{d t^{2}}+15 \frac{d y}{d t}+50 y=100 x
$$

b) Determine $y(t)$ assuming

$$
x(t)=2+3 \sin (5 t)+4 \sin (100 t)
$$

Use superposition
$x(t)=2$

$$
y=(2) \cdot 2
$$

$$
y=4
$$

$$
\begin{aligned}
& x(t)=3 \sin (5 t) \\
& s=j 5
\end{aligned}
$$

$$
\left(\frac{100}{(s+5)(s+10)}\right)_{s=j 5}=1.26 \angle-71^{0} \quad\left(\frac{100}{(s+5)(s+10)}\right)_{s=100}=0.01 \angle-171^{0}
$$

$$
y=\left(1.26 \angle-71^{0}\right) \cdot 3 \sin (5 t)
$$

$$
y=\left(0.01 \angle-171^{0}\right) \cdot 4 \sin (100 t)
$$

$$
y=3.79 \sin \left(5 t-71^{0}\right)
$$

$$
y=0.04 \sin \left(100 t-171^{0}\right)
$$

Add up the three inputs to get the total input.
Add up the tree outputs to get the total ouput.

$$
y(t)=4+3.79 \sin \left(5 t-71^{0}\right)+0.04 \sin \left(100 t-171^{0}\right)
$$

c) Plot the gain vs. frequency for this filter from 0 to $20 \mathrm{rad} / \mathrm{sec}$

```
-->w = [0:0.01:20]';
-->j = sqrt(-1);
-->s = j*W;
-->G = 100 ./ ( (s+5).*(s+10) );
-->plot(w,abs(G))
-->xlabel('Frequency (rad/sec)');
-->ylabel('Gain');
```


Gain vs. frequency with the gain at $\{0,5,100\}$ shown. Note that this is a low-pass filter:

- Low frequencies are passed $(0,5)$
- High frequencies are rejected (100)
d) Design a circuit to implement this filter.

Since you have real poles, use a 2-stage RC filter

$$
\begin{array}{llll}
\frac{1}{R_{1} C_{1}}=5 & \mathrm{R} 1=100 \mathrm{k} & \mathrm{C} 1=2 \mathrm{uF} \\
\frac{1}{R_{2} C_{2}}=100 & \mathrm{R} 2=1 \mathrm{M} & \mathrm{C} 2=0.01 \mathrm{~F}
\end{array}
$$

To add a gain of 4 (DC gain is 4), add a $x 4$ amplifier at the end:

2) For the following filter:

$$
Y=\left(\frac{200}{s^{2}+4 s+25}\right) X
$$

a) What is the differential equation relating X and Y ?

Cross multiply

$$
\left(s^{2}+4 s+25\right) Y=(200) X
$$

sY means the derivative of Y

$$
\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+25 y=200 x
$$

b) Determine $\mathrm{y}(\mathrm{t})$ assuming

$$
x(t)=2+3 \sin (5 t)+4 \sin (100 t)
$$

$$
\begin{aligned}
& x(t)=2 \\
& s=0 \\
& \left(\frac{200}{s^{2}+4 s+25}\right)_{s=0}=8 \\
& y=(8) \cdot 2 \\
& y=16
\end{aligned}
$$

$$
x(t)=3 \sin (5 t)
$$

$$
s=j 5
$$

$$
\begin{aligned}
& x(t)=4 \sin (100 t) \\
& s=j 100 \\
& \left(\frac{200}{s^{2}+4 s+25}\right)_{s=j 100}=0.02 \angle-178^{0} \\
& y=\left(0.02 \angle-178^{0}\right) \cdot 4 \sin (100 t) \\
& y=0.08 \sin \left(100 t-178^{0}\right)
\end{aligned}
$$

Putting it all together:

$$
y(t)=16+30 \sin \left(5 t-90^{0}\right)+0.08 \sin \left(100 t-178^{0}\right)
$$

c) Plot the gain vs. frequency for this filter from 0 to $20 \mathrm{rad} / \mathrm{sec}$

```
-->w = [0:0.01:110]';
->s = j*w;
-->G = 200 ./ (s.^2 + 4*s + 25);
-->plot(w,abs(G))
-->xlabel('Frequency (rad/sec)');
-->ylabel('Gain');
```


d) Design a circuit to implement this filter.

$$
\left(\frac{200}{s^{2}+4 s+25}\right)=\left(\frac{k\left(\frac{1}{R C}\right)^{2}}{s^{2}+\left(\frac{3-k}{R C}\right) s+\left(\frac{1}{R C}\right)^{2}}\right)
$$

This filter has poles at

$$
s=-2 \pm j 4.58=-5 \angle \pm 66.42^{0}
$$

$1 / R C$ is the amplitude of the poles

$$
\begin{aligned}
& \left(\frac{1}{R C}\right)^{2}=25 \\
& \left(\frac{1}{R C}\right)=5
\end{aligned}
$$

Let $\mathrm{R}=100 \mathrm{k}, \mathrm{C}=2 \mathrm{uF}$
k sets the angle of the pole

$$
\begin{aligned}
& \left(\frac{3-k}{R C}\right)=4 \\
& 3-k=2 \cos \left(66.42^{0}\right) \\
& k=2.2
\end{aligned}
$$

Let R1 = 100k, R2 = 120k
This gives a DC gain of 2.2. For a DC gain of 8, add another gain of 3.63

3) For the following filter:

$$
Y=\left(\frac{2 s}{s^{2}+2 s+25}\right) X
$$

a) What is the differential equation relating X and Y ?

Cross multiply

$$
\left(s^{2}+2 s+25\right) Y=(2 s) X
$$

sY means the derivative of Y

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+25 y=2 \frac{d x}{d t}
$$

b) Determine $y(t)$ assuming

$$
x(t)=2+3 \sin (5 t)+4 \sin (100 t)
$$

$$
\begin{aligned}
& x(t)=2 \\
& s=0 \\
& \left(\frac{2 s}{s^{2}+2 s+25}\right)_{s=0}=0 \\
& y=(0) \cdot 2 \\
& y=0
\end{aligned}
$$

$$
\begin{aligned}
& x(t)=3 \sin (5 t) \\
& s=j 5 \\
& \left(\frac{2 s}{s^{2}+2 s+25}\right)_{s=j 5}=1 \\
& y=(1) \cdot 3 \sin (5 t) \\
& y=3 \sin (5 t)
\end{aligned}
$$

$$
x(t)=4 \sin (100 t)
$$

$$
s=j 100
$$

$$
\left(\frac{2 s}{s^{2}+2 s+25}\right)_{s=j 100}=0.02 \angle-88^{0}
$$

$$
y=\left(0.02 \angle-88^{0}\right) \cdot 4 \sin (100 t)
$$

$$
y=0.08 \sin \left(100 t-88^{0}\right)
$$

Putting it all together:

$$
y(t)=0+3 \sin (5 t)+0.08 \sin \left(100 t-88^{0}\right)
$$

c) Plot the gain vs. frequency for this filter from 0 to $20 \mathrm{rad} / \mathrm{sec}$

```
-->w = [0:0.01:100]';
->s = j*w;
-->G = 2*s ./ (s.^2 + 2*s + 25);
-->plot(w,abs(G))
-->xlabel('Frequency (rad/sec)');
-->ylabel('Gain');
```


This is a band-pass filter: frequencys over the band of 3 to $7 \mathrm{rad} / \mathrm{sec}$ are passed.
d) Design a circuit to implement this filter.

$$
Y=\left(\frac{2 s}{s^{2}+2 s+25}\right) X
$$

From the lecture notes, this form has the following circuit:

$$
Y=\left(\frac{-\left(\frac{1}{R_{1} C}\right) s}{s^{2}+\left(\frac{2}{R_{3} C}\right) s+\left(\frac{R_{1}+R_{2}}{R_{1} R_{2}}\right)\left(\frac{1}{R_{3} C^{2}}\right)}\right) X
$$

Matching terms: Let $\mathrm{C}=1 \mathrm{uF}$

$$
\begin{array}{ll}
\left(\frac{1}{R_{1} C}\right)=2 & \mathrm{R} 1=500 \mathrm{k} \\
\left(\frac{2}{R_{3} C}\right)=2 & \mathrm{R} 3=1 \mathrm{M} \\
\left(\frac{R_{1}+R_{2}}{R_{1} R_{2}}\right)\left(\frac{1}{R_{3} C^{2}}\right)=25 & \mathrm{R} 2=43.5 \mathrm{k}
\end{array}
$$

