ECE 321 - Homework \#3

Filter Design, Analog Computers. Due Monday, November 20th, 2017
Problem 1-3) Design a low-pass filter to meet the following requirements:

- Input: $+/-10 \mathrm{~V}$, capable of 20 mA
- Output: $+/-10 \mathrm{~V}$ capable of 20 mA
- Relationship:
- $1.1<$ Gain $<0.9 \quad \mathrm{f}<200 \mathrm{~Hz}$
- Gain $<0.1 \quad \mathrm{f}>500 \mathrm{~Hz}$

1) Give a filter, $G(s)$, which meets these requirements. Plot the gain vs. frequency for your $G(s)$ in Matlab. First, determine the number of poles you need:

$$
\begin{aligned}
& \left(\frac{200 H z}{500 H z}\right)^{n}=0.1 \\
& n=\frac{\ln (0.1)}{\ln (0.4)}=2.51
\end{aligned}
$$

Let $\mathrm{n}=3$

Second, pick a type of filter. Let's use a Chebychev filter. From Bison Academy, a 3rd-order Chebychev filter with a corner at $1 \mathrm{rad} / \mathrm{sec}$ is

$$
G(s)=\left(\frac{k}{(s+0.85)\left(s+1.21 \angle \pm 69.5^{0}\right)}\right)
$$

Scale this so the corner is at 200 Hz (400 pi)

$$
G(s)=\left(\frac{k}{(s+1068)\left(s+1520 \angle \pm 69.5^{0}\right)}\right)
$$

Plot the gain vs. frequency in Matlab

```
-->f = [0:1000]';
-->w = 2*pi*f;
-->s = j*W;
-->p1 = 1068;
-->p2 = 1520*exp(j*69.5*pi/180);
-->p3 = conj(p2);
-->G = 1./( (s+p1) .* (s+p2) .* (s+p3) );
-->k = 1/abs(G(1))
```

 \(2.468 \mathrm{D}+09\)
    ```
-->G = k ./ ( (s+p1) .* (s+p2) .* (s+p3) );
-->plot(f,abs(G))
-->plot([0,200,200],[0.9,0.9,0],'r')
-->plot([500,500,1000],[1,0.1,0.1],'r')
-->xlabel('Hz');
```


Pretty lucky: this meets the requirements.
answer:

$$
G(s)=\left(\frac{2.468 \cdot 10^{9}}{(s+1068)\left(s+1520 \angle \pm 69.5^{0}\right)}\right)
$$

2) Design a circuit to implement this circuit

Let R1 $=10 \mathrm{k}$

$$
\begin{aligned}
& \frac{1}{R_{1} C_{1}}=1068 \\
& C_{1}=94 n F
\end{aligned}
$$

Let R2 $=100 \mathrm{k}$

$$
\begin{aligned}
& \frac{1}{R_{2} C_{2}}=1520 \\
& C_{2}=6.58 n F
\end{aligned}
$$

For the gain:

$$
\begin{aligned}
& (3-k)=2 \cos \left(69.5^{0}\right) \\
& k=2.3
\end{aligned}
$$

Let R3 = 100k, R4 = 130k

This results in the circuit having a gain of 2.3. Either

- Live with it. Call the ouput 2.3Y and adjust later stages, or
- Drop the gain by a factor of 2.3

Using the latter and Thevenin equivalents.

$$
\begin{aligned}
& R_{a} \| R_{b}=R_{t h}=10 k \\
& \left(\frac{R_{b}}{R_{a}+R_{b}}\right) X=\frac{X}{2.3}
\end{aligned}
$$

which gives $\mathrm{Ra}=23 \mathrm{k}, \mathrm{Rb}=17.7 \mathrm{k}$

3) Test your design in PartSim: Assume a load of 1 k Ohms is added (should be part of the requirements: capable of driving a 1 k Ohm load)

200Hz: Gain $=0.963$

500Hz: Gain $=0.09648$

| | 200 Hz | 500 Hz |
| :---: | :---: | :---: |
| Gain (calc) | 0.9815 | 0.0899 |
| Gain (sim) | 0.963 | 0.09648 |
| Spec | $0.9<\mathrm{G}<1.1$ | <0.1 |
| Meet Spec? | yes | yes |

2) Design a band-pass filter to meet the following requirements:

- Input: $+/-10 \mathrm{~V}$, capable of 20 mA
- Output: $+/-10 \mathrm{~V}$ capable of 20 mA
- Relationship:
- $1.1<$ Gain $<0.9 \quad \mathrm{f}=200 \mathrm{~Hz}$
- Gain $<0.1 \quad \mathrm{f}>250 \mathrm{~Hz}$
- Gain $<0.1 \quad \mathrm{f}<150 \mathrm{~Hz}$

a) Give a filter, $G(s)$, which meets these requirements. Plot the gain vs. frequency for your $G(s)$ in Matlab.
- The pass frequency is 200 Hz : the complex part of the pole is 200 Hz ($1257 \mathrm{rad} / \mathrm{sec}$)
- Assume the band width is $+/-10 \mathrm{~Hz}$: the real part of the pole is 10 Hz away from the resonance $(62.8 \mathrm{rad} / \mathrm{sec})$

Pick a filter with poles at

$$
G(s)=\left(\frac{k s}{(s+62.8+j 1255)(s+62.8-j 1255)}\right)=\left(\frac{125 s}{s^{2}+125 s+1257^{2}}\right)
$$

Check this in Matlab:

```
-->G = tf([125,0],[1,125,1257^2])
    125s
s^2 + 125s + 11580000
```

Check the gain at $150 \mathrm{~Hz}, 200 \mathrm{~Hz}, 250 \mathrm{~Hz}$:

```
-->abs(evalfr(G,j*150*2*pi))
    0.1678813
-->abs(evalfr(G,j*200*2*pi))
    0.9999831
-->abs(evalfr(G,j*250*2*pi))
    0.2160498
```

The gain is 2.1 x too large at 250 Hz . To fix this, make the real part of the pole smaller (make the 's' term smaller). A little trian and error results in

$$
\begin{aligned}
& \quad G(s)=\left(\frac{k s}{(s+28+j 1257)(s+28-j 1257)}\right)=\left(\frac{56 s}{s^{2}+56 s+1257^{2}}\right) \\
& -->G=\operatorname{tf} 2 \operatorname{ss2} 2([56,0],[1,56,1257 \wedge 2]) ; \\
& -->a b s\left(\text { evalfr }\left(G, j * 150^{*} 2 * p i\right)\right) \\
& \quad 0.0760725
\end{aligned}
$$

```
-->abs(evalfr(G,j*200*2*pi))
    0.9999160
-->abs(evalfr(G,j*250*2*pi))
    0.0986480
```

Plotting the graph:

```
-->f = [100:0.1:300]';
-->w = 2*pi*f;
-->s = j*W;
-->G = 56*s ./ (s.^2 + 56*s + 1257^2);
-->plot(f,abs(G))
-->hold on
-->plot([200, 200], [0,0.9],'r')
-->plot([100,150,150],[0.1,0.1,1],'r');
- ->plot([250, 250,300],[1,0.1,0.1],'r');
-->xlabel('Hz');
```

ull the real part of the pole in by a factor of 2.1

$$
\operatorname{real}(s)=\frac{62.5}{2.1}=29.76
$$

b) Design a circuit to implement this circuit

$$
\left(\frac{56 s}{s^{2}+56 s+1257^{2}}\right)=\left(\frac{-\left(\frac{1}{R_{1} C}\right) s}{s^{2}+\left(\frac{2}{R_{3} C}\right) s+\left(\frac{R_{1}+R_{2}}{R_{1} R_{2}}\right)\left(\frac{1}{R_{3} C^{2}}\right)}\right)
$$

Let $\mathrm{C}=1 \mathrm{uF}$

$$
\begin{array}{ll}
\left(\frac{1}{R_{1} C}\right)=56 & \mathrm{R} 1=17.8 \mathrm{k} \\
\left(\frac{2}{R_{3} C}\right)=56 & \mathrm{R} 3=35.7 \mathrm{k} \\
\left(\frac{R_{1}+R_{2}}{R_{1} R_{2}}\right)\left(\frac{1}{R_{3} C^{2}}\right)=1257^{2} & \mathrm{R} 2=17.74
\end{array}
$$

17.74 Ohms is a little small, so make

- All resistors 10x larger
- All capacitors 10x smaller

c) Test your design in PartSim

150Hz: Gain $=0.0797$ (0.076 computed in Matlab)

$200 \mathrm{~Hz}:$ Gain $=0.9466$ (1.00 computed in Matlab)

250Hz: Gain $=0.0796$ (0.098 computed in Matlab)

| | 200 Hz | 200 Hz | 250 Hz |
| :---: | :---: | :---: | :---: |
| Gain (calc) | 0.076 | 1.000 | 0.098 |
| Gain (sim) | 0.0797 | 0.9466 | 0.0796 |
| Spec | <0.1 | $0.9<\mathrm{g}<1.1$ | <0.1 |
| Meet Spec? | yes | yes | yes |

3) Build one of these circuits and check that it meets the requirements
