ECE 321 - Homework \#4

2-Port Models, DC Analysis of Transistor Amplifiers. Due Monday, November 27th, 2017

1) Determine the 2 -port model for the following circuit.

Rin: Short Vout. Measure the resistance at the input.

$$
R_{\text {in }}=400+500 \| 1000=733 \Omega
$$

Ai: Apply 1 V at the output. Measure the voltage at the input

$$
A_{i}=V_{i n}=\left(\frac{1000}{1000+500}\right) 1 V=0.67 \mathrm{~V}
$$

Rout: Short Vin. Measure the resistance at the output

$$
R_{\text {out }}=500+400 \| 1000=785 \Omega
$$

Ao: Apply 1V at the input. Measure the voltage at the output

$$
A_{o}=\left(\frac{1000}{1000+400}\right) 1 V=0.714 V
$$

2) Determine the 2-port model for the following circuit.

Rin: Short the output. Measure the resistance at the input.
This isn't obvious, so apply a 1 V test voltage and see how much current it draws.

$$
\begin{aligned}
& \left(\frac{X-1}{1 k}\right)+\left(\frac{X}{2 k}\right)-100\left(\frac{0-X}{2 k}\right)=0 \\
& X=0.0194 V \\
& I_{i n}=\left(\frac{1 V}{10 k}\right)+\left(\frac{1-0.0194}{1 k}\right)=1.081 \mathrm{~mA} \\
& R_{\text {in }}=\frac{V_{i n}}{I_{i n}}=\frac{1 V}{1.081 \mathrm{~mA}}=925 \Omega
\end{aligned}
$$

Ai: Apply 1 V at the output and measure the voltage at the input. Turns out 0 V makes the currents balance

$$
\mathrm{Ai}=0
$$

Rout: Short the input. Measure the resistance at the output

- $\mathrm{X}=0$ makes the currents balance, so $\mathrm{X}=0$.
- All you see at the output is 3 k
- \quad Rout $=3 \mathrm{k}$

Ao: Applyu 1 V at the niput and determine the voltage at the output (shown above)

- $\mathrm{X}=0.0194 \mathrm{~V}$
- $I_{b}=\left(\frac{0-X}{2 k}\right)=-9.709 \mu A$
- $100 I_{b}=-970.9 \mu \mathrm{~A}$
- $V_{\text {out }}=-3 k \cdot 100 I_{b}=2.913 \mathrm{~V}$

3) Determine the Q -point for the following circuit. Assume a 3904 transistor $(\beta=200)$

Redraw using the Thevenin equivalent at the base

$$
\begin{aligned}
& R_{t h}=400 \mathrm{k}| | 800 \mathrm{k}=266.7 \mathrm{k} \\
& V_{t h}=\left(\frac{400 \mathrm{k}}{400 \mathrm{k}+800 \mathrm{k}}\right) 12 \mathrm{~V}=4 \mathrm{~V}
\end{aligned}
$$

Replace the transistor with its model in the active region

Write the loop equation for Ib

$$
\begin{aligned}
& -4+266.7 \mathrm{k} I_{b}+0.7+1 \mathrm{k} \cdot\left(I_{b}+200 I_{b}\right)=0 \\
& I_{b}=\left(\frac{4-0.7}{266.7 \mathrm{k}+201 \cdot 1 \mathrm{k}}\right)=7.0563 \mu A \\
& I_{c}=\beta I_{b}=1.411 \mathrm{~mA}
\end{aligned}
$$

Solve for the Q-point

$$
\begin{aligned}
& V_{c}=12-4 k \cdot I_{c}=6.355 \mathrm{~V} \\
& V_{e}=1 \mathrm{k} \cdot\left(I_{b}+I_{c}\right)=1.418 \mathrm{~V} \\
& V_{c e}=V_{c}-V_{e}=4.937 \mathrm{~V}
\end{aligned}
$$

The Q-Point is

$$
\text { Vce }=4.937 \mathrm{~V}
$$

$$
\text { Ic }=1.411 \mathrm{~mA}
$$

4) Modify this circuit so that

- The Q-pont is Vce $=6.0 \mathrm{~V}$
- The Q-point is stabilized for variations in β

First, redraw the circuit using the Thevenin equivalent for R1 and R2. Next, from the specs, determine the current Ic

$$
\begin{aligned}
& V_{c e}=V_{c}-V_{e} \\
& 6 V=\left(12-4000 I_{c}\right)-1000\left(I_{b}+I_{c}\right) \\
& I_{c}=200 I_{b} \\
& I_{c}=\left(\frac{12 V-6 V}{4000+1000 \cdot\left(1+\frac{1}{200}\right)}\right)=1.199 \mathrm{~mA}
\end{aligned}
$$

This means

$$
I_{b}=\frac{I_{c}}{\beta}=5.994 \mu A
$$

To stabilize the Q-point

$$
R_{b} \ll(1+\beta) R_{e}=20,100 \Omega
$$

Let $\mathrm{Rb}=2 \mathrm{k}$

$$
V_{b}=V_{t h}=2 k \cdot I_{b}+0.7+1 k \cdot\left(I_{b}+I_{c}\right)=1.917 \mathrm{~V}
$$

Convert back to R1 and R2

$$
\begin{aligned}
& \left(\frac{R_{1} R_{2}}{R_{1}+R_{2}}\right)=2 k \\
& \left(\frac{R_{2}}{R_{1}+R_{2}}\right) 12 \mathrm{~V}=1.917 \mathrm{~V}
\end{aligned}
$$

Solving

$$
\begin{aligned}
& R_{1}=\left(\frac{12 V}{1.917 V}\right) 2 k=12.52 k \\
& R_{2}=2.38 k
\end{aligned}
$$

