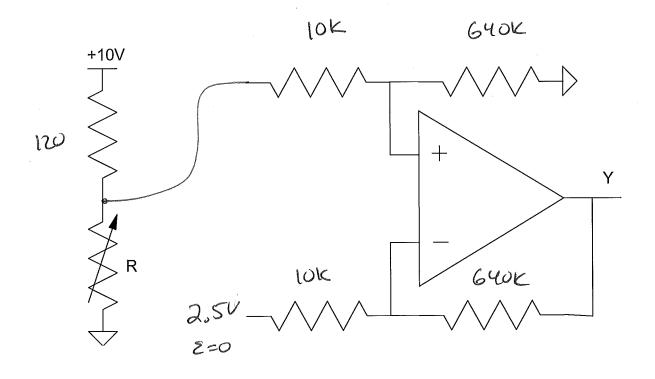

ECE 321 - Quiz #2 - Name

Push-Pull Amplifiers, Op-Amp Amplifiers, November 8, 2018

1) An accelerometer uses the deflection of a beam to measure acceleration. Calculate the strain on the beam when the deflection is 10mm. Assume the beam is 100mm long and 2mm thick.

Radius R	Arc Length 2Q	Length of Deflected Beam (L)	Strain dL / L	
130mm	45.23° .7896 rad	L=r0 103.43mm ote 102.64mm cente	+.0077 +0.0343	,


2) Assume the strain goes from 0 .. 0.03. Design a circuit which has an output of

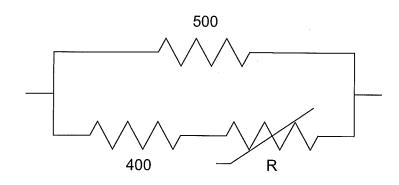
•
$$Y = 10V$$
 for $\varepsilon = 0.03$

•
$$Y = 0V$$
 for $\varepsilon = 0$

Assume the strain sensor has a resistance of

$$R = 120 \cdot (1 + 2.14\epsilon) \Omega$$

= 127,70 \(\delta = \cdot (\xi = \cdot 3)\)
= 12\(\omega\)

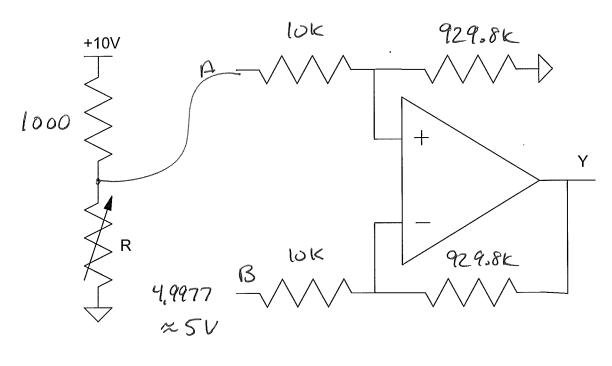

$$V(127.7) = 2.5778V$$

$$9ain = \frac{10}{2.5778-2.5} = 64$$

3) Linearizing Circuit: The following circuit is intended to linearize the resistance between 0C and +40C. Determine the net impedance at 0C, 20C, and 40C as well as the "error" in this linearizing circuit

$$R = 1000 \cdot \exp\left(\frac{3905}{K} - \frac{3905}{298}\right)$$

Z(0C)	Z(20C)	Z(40C)	Sum Squred Error $E = \left(Z_{20C} - \frac{Z_{0C} + Z_{40C}}{2}\right)^2$
(273K)	(293K)	(313K)	
(R = 3320 Ohms)	(R = 1250 Ohms)	(R = 534 Ohms)	
440.75	383,72	325.66	.2607

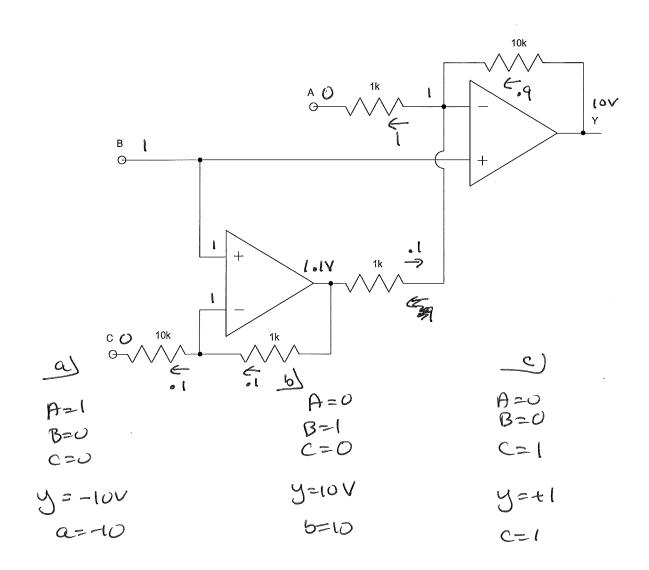


4) Assume an RTD has a resistance vs. temperatuer relationship of

$$R = 1000 \cdot (1 + 0.0043T) \Omega$$

where T is the temepratuer in degrees C. Design a circuit which outputs

- Y = -10V at T = -10C and
- Y = +10V at T = +10C



$$\frac{-10^{\circ}}{R=957}$$
 $\frac{+10^{\circ}}{R=1043}$ $V=4.89$ $V=5.1052$

5) For the following amplifier, determine the gains {a, b, c}

$$Y = aA + bB + cC$$

a	ь	ø.C
-10	+10	+

Industrial Help Bonus! Hemp-based plastics take 3-6 months to decompose. How long do petroleum-based plastics to decompose?

2450 years (plastic bottle)