ECE 321 - Homework \#2

Sensors. Due Wednesday, November 14th, 2018

Temperature Sensors

Problem 1-2) Design a circuit to measure temperature from -20C to +20 C .

- Input: Temperature from -20C to +20C
- Output: -10 V to +10 V , capable of driving a 1 k resistor (10 mA)
- Relationship:
- At -20C, the output is -10 V
- At +20 C , the output is +10 V
- Proportioanl inbetween

Assume a thermistor with a resistance - temperature relationship of

$$
R=1000 \cdot \exp \left(\frac{3905}{T}-\frac{3905}{298}\right) \Omega
$$

Problem 1) Design a linearizing circuit so that the resistance is approximately linear from -20C to +20 C

- Plot the resulting resistance vs. temperature relationship using Matlab (or similar program)

First, assume Rb $=1234$ Ohms. Set up a cost funciton in Matlab

```
function [ J ] = Thermistor( Z )
    Ra = Z;
    Rb = 1234;
    Rm20 = 1000* exp(3905/253 - 3905/298);
    R0 = 1000* exp(3905/273 - 3905/298);
    R20 = 1000*exp(3905/293 - 3905/298);
% Z = R1 R2 / (R1 + R2)
    Zm20 = (Rm20 + Rb)*(Ra) / (Rm20 + Ra + Rb);
    Z0 = (R0 + Rb)*(Ra) / (R0 + Ra + Rb);
    Z20 = (R20 + Rb )* (Ra) / (R20 + Ra + Rb);
    E = Z0 - (Zm20 + Z20)/2;
    J = E*E;
    end
```

Solve using fminsearch.

```
>> [Ra, e] = fminsearch('Thermistor',1000)
Ra = 1.3345e+003
e = 2.0953e-013
```

Plot the net resistance vs. temperature from -20C to +20C

T = [-20:0.1:20]';
$K=T+273 ;$
$R=1000^{*} \exp (3905 . / K-3905 / 298)$;
$\mathrm{Rb}=1234$;
$Z=(R+R b) * R a . /(R+R a+R b) ;$
size(T)
$401 \quad 1$
$\mathrm{N}=[1,401]$;
plot(T, Z,'b', T(N), Z(N), 'r')
xlabel('Temperature (Celsius)');
ylabel('Net Resistance');

Actual Resistance(blue) \& Linear Resistance (red) from -20C to +20 C

Problem 2) Using this linearizing circuit, design a circuit which ouputs -10 V to +10 V as temperature goes from -20 C to +20 C .

Assume a 937Ohm resistor for a voltage divider. The voltage will be -20C:

$$
\begin{aligned}
& \mathrm{Z}=1195.9 \text { Ohms } \\
& V_{\text {in }}=\left(\frac{\mathrm{Z}}{Z+937}\right) 10 \mathrm{~V}=5.607 \mathrm{~V} \\
& \text { Vout }=-10 \mathrm{~V}
\end{aligned}
$$

+20C:

$$
\mathrm{Z}=868.2 \mathrm{Ohms}
$$

$$
V_{\text {in }}=\left(\frac{\mathrm{Z}}{Z+937}\right) 10 \mathrm{~V}=4.9809 \mathrm{~V}
$$

$$
\text { Vout }=+10 \mathrm{~V}
$$

The gain you need is

```
gain = (10 - (-10)) / ( max(Vin) - min(Vin) )
    gain = 25.0744
offset = 10/gain + Vin(401)
    offset = 5.2082
y = gain*(offset - Vin);
plot(y,T)
```


Plot the resulting voltage vs. temperature relationship using Matlab (or similar program)

Note: The voltage divider is also non-linear, which causes the actual voltage (blue) to bend away from a linear relationship (red).

You could repeat with the cost being the output (Y) should be linear rather than Z being linear.

Strain Sensors

Problem 3) Assume a bathroom scale uses a steel beam to measure weight, and the beam deflects 10 mm with a weight of 200 lb (889N)

Design a circuit which output

- 0 V at $0 \mathrm{lb}(0 \mathrm{~N})$, and
- +10 V at 200 lb (889 N)

Assume a strain sensor:

$$
R=120(1+2.14 \varepsilon)
$$

First, compute the strain. A 10mm deflection with a 150 mm long beam corresponds to a radius of

$$
\begin{aligned}
& r^{2}=75^{2}+(r-10)^{2} \\
& r=286.25 \mathrm{~mm}
\end{aligned}
$$

The angle is then

$$
\theta=2 \cdot \arctan \left(\frac{75 m m}{276.25 m m}\right)=30.3786^{0}=0.5302 \text { radians }
$$

The arc-length of the inner surface ($\mathrm{r}=286.25 \mathrm{~mm}-0.5 \mathrm{~mm}$) is

$$
\begin{aligned}
& L_{\text {inside }}=(0.5302 \mathrm{rad}) \cdot(286.25 \mathrm{~mm}-0.5 \mathrm{~mm})=151.5064 \mathrm{~mm} \\
& L_{\text {outside }}=(0.5302 \mathrm{rad}) \cdot(286.25 \mathrm{~mm}+0.5 \mathrm{~mm})=152.0366 \mathrm{~mm} \\
& L_{\text {avg }}=151.7715 \mathrm{~mm}
\end{aligned}
$$

(the beam will pull inward slightly so that the average length remains 150 mm)
The strain is then

$$
\begin{array}{ll}
\varepsilon_{\text {inside }}=\left(\frac{151.5064-151.7715}{151.7715}\right)=-0.001747 & \text { compression } \\
\varepsilon_{\text {outside }}=\left(\frac{152.0366-151.7715}{151.7715}\right)=+0.001747 & \text { tension }
\end{array}
$$

The resistance of the strain gage is then

$$
\begin{aligned}
& R_{\text {inside }}=120 \cdot(1+2.14 \varepsilon)=119.551 \Omega \\
& R_{\text {outside }}=120 \cdot(1+2.14 \varepsilon)=120.448 \Omega
\end{aligned}
$$

Assume a voltage divider with the strain gages on the inside and outside. The votlages will be

$$
\begin{aligned}
& V_{a}=\left(\frac{120.448}{120.446+119.551}\right) 5 V=2.50934 V \\
& V_{b}=\left(\frac{119.551}{120.446+119.551}\right) 5 V=2.490655 V
\end{aligned}
$$

The gain you need to make this

$$
\text { gain }=\left(\frac{10 V-0 V}{2.50934 V-2.490655 V}\right)=535.04
$$

note: When you have this much gain, an instrumentation amplifier designed for strain gages works better. You should use something like an AMP04 for this circuit instead.

ECE 321 Project: Section (A)

Problem 4) Specify the requirements for your power amplifier (section A): (inputs, outputs, how they relate)
Input:

- $-5 \mathrm{~V} . .+5 \mathrm{~V}$ analog signal,
- $0-1 \mathrm{kHz}$,
- capable of driving 10 mA

Output:

- 8-Ohm speaker

Relationship:

- $\mathrm{Y}=\mathrm{X}$
- 200 mV tolerance meaning you need to compensate for crossover distortion

Problem 5) Design a circuit to meet these requirements. Use a TIP 112 and/or TIP117 transistors

- $\beta=1000$
- $\left|V_{b e}\right|=1.4 \mathrm{~V}$
- $\min \left(\left|V_{c e}\right|\right)=0.9 \mathrm{~V}$

The voltages you should get are:

Vin	Vb	Ve
+5 V	+6.4 V	+5 V
+1 V	+2.4 V	+1 V
-1 V	-2.4 V	-1 V
-5 V	-6.4 V	-5 V

Problem 6) Simulate your circuit to verify it operates correctly. Check the voltages and currents at

- $\operatorname{Vin}=-5 \mathrm{~V},+5 \mathrm{~V}$ (endpoints),
- $\mathrm{Vin}=-1 \mathrm{~V},+1 \mathrm{~V}$ (points inbetween)
to see if they match your computations.

	Vb		Ve	
Vin	Calculated	Simulated	Calculated	Simulated
+5 V	+6.4 V	+6.09 V	+5 V	+5.00 V
+1 V	+2.4 V	+1.83 V	+1 V	+1.00 V
-1 V	-2.4 V	-1.75 V	-1 V	-1.00 V
-5 V	-6.4 V	-5.92 V	-5 V	-5.00 V

Note: Vb is off with the simulation since we're using an different transistor in simulation vs. calculation (and lab).

- The calculations assumed a TIP112/TIP117 transistor, which are Darlington pairs (Vbe =1.4V)
- The simulation used a 3904 transistor, which has Vbe $=0.7 \mathrm{~V}$

What we really care about is the output (Ve). This matches our calculations.

Problem 7) Build your circuit in lab and verify it operates correctly. Check the voltages and currents at

- \quad Vin $=-5 \mathrm{~V},+5 \mathrm{~V}$ (endpoints),
- V in $=-1 \mathrm{~V},+1 \mathrm{~V}$ (points inbetween)
to see if they match your computations and simulation results.

Problem 8) Demo. Demonstrate your amplfier with an audio signal (video or in person).

Note: Save your circuit. You'll use it again in the following homework sets

