ECE 321 - Homework \#4

Filters. Project part (b). Due Monday, November 26th, 2018

Filters:

Problem 1) Assume $x(t)$ and $y(t)$ are related by the following transfer function:

$$
Y=\left(\frac{10}{(s+2)(s+3)}\right) X
$$

Find $y(t)$ assuming

$$
x(t)=2+3 \cos (4 t)
$$

Use superposition

$$
\begin{aligned}
& \mathrm{x}(\mathrm{t})=2 \\
& \\
& \mathrm{~s}=0 \\
& \left(\frac{10}{(s+2)(s+3)}\right)_{s=0}=1.6667 \\
& Y=\left(\frac{10}{(s+2)(s+3)}\right) X \\
& Y=(1.6667)(2) \\
& Y=3.3333 \\
& \mathrm{y}(\mathrm{t})=3.3333
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{x}(\mathrm{t})=3 \cos (4 \mathrm{t}) \quad \mathrm{X}=3+\mathrm{j} 0 \quad \text { (phasor form) } \\
\mathrm{s}=\mathrm{j} 4 \\
\left(\frac{10}{(s+2)(s+3)}\right)_{s=j 4}=0.4472 \angle-116^{0} \\
Y=\left(\frac{10}{(s+2)(s+3)}\right) X \\
Y=\left(0.4472 \angle-116^{0}\right)(3+j 0) \\
Y=1.3416 \angle-116^{0} \\
y(t)=1.3416 \cos \left(4 t-116^{0}\right)
\end{gathered}
$$

The total answer is the DC term and the AC term

$$
y(t)=3.3333+1.3416 \cos \left(4 t-116^{0}\right)
$$

Problem 2) Assume $x(t)$ and $y(t)$ are related by the following transfer function:

$$
Y=\left(\frac{5 s+2}{s^{2}+5 s+300}\right) X
$$

2a) Plot the gain from X to Y vs. frequency from $0 \mathrm{rad} / \mathrm{sec}$ to $30 \mathrm{rad} / \mathrm{sec}$.

```
w = [0:0.01:30]';
s = j*w;
G = (5*s+2) ./ (s.^2 + 5*s + 300);
plot(w,abs(G))
xlabel('Frequency (rad/sec)');
ylabel('Gain');
```


2b) Find the frequency, w, which results in the gain being a maximum (resonance):

$$
x(t)=2 \cos (\omega t)
$$

Find $\mathrm{y}(\mathrm{t})$ for this $\mathrm{x}(\mathrm{t})$.
The maximum is at $\mathrm{w}=17.32(\sqrt{300})$

$$
\begin{aligned}
& \left(\frac{5 s+2}{s^{2}+5 s+300}\right)_{s=117.32}=1.0003 \angle-1.3^{0} \\
& Y=\left(1.0003 \angle-1.3^{0}\right) \cdot 2 \cos (17.32 t) \\
& y(t)=2.0005 \cos \left(17.32 t-1.3^{0}\right)
\end{aligned}
$$

Project (part b):

Amplifier and Mixer

Problem 3) Requirements

Input: Two cell phones.

- A: 1 Vpp analog signal, capable of driving 10 mA
- B: 1Vpp analog signal, capable of driving 10 mA

Output

- $\mathrm{Y}:-10 \mathrm{~V}$ to +10 V analog signal, capable of driving 10 mA

Relationship

$$
Y=10(\alpha A+(1-\alpha) B)
$$

Problem 4) Analysis

1 V at $10 \mathrm{~mA}=100 \mathrm{Ohms}$. The impedance at the input must be at least 100 Ohms . Use a 10 k potentiometer To model the $10 \mathrm{~mA} @ 10 \mathrm{~V}$ load, use a 1 k resistor at the load

Problem 5) Simulate your circuit to verify it operates correctly. Check the voltages at

- At the endpoints
- One or two points in between
to see if they match your computations.

The output is

- 90% of a 10 Vp 100 Hz sine wave (10 x the input), mixed with
- 10% of a 10 Vp 1 kHz sine wave (10 x the input)

The result has a peak of 10 V and a 1 kHz component which is 1 Vpp

Problem 6) Build your circuit in lab and verify it operates correctly. Check the voltages at

- At the endpoints
- One or two points in between
to see if they match your computations and simulation results.

Problem 7) Demo. Demonstrate your amplfier with the power amp from homework \#1 (video or in person).

