ECE 321 - Homework \#1

Push-Pull Amplifiers, Instrumentation Amplifiers, Temperature Sensors. Due Wednesday, Novembber 13th

ECE 321 Project:

0) Pick a project for ECE 321 (see page 2 for suggestions)

- Give the name of the people in your group
- Specify the requirements for the overall project

For the following sections, assume TIP112 (NPN) and TIP117 (PNP) transistors:

- $\beta=1000$
- $\quad \mathrm{Vbe}=1.4 \mathrm{~V}$
- $\min ($ Vce $)=0.9 \mathrm{~V}$
- $\max ($ Ic $)=3 \mathrm{~A}$

Push-Pull Amplifiers

1) Determine the voltages and currents for a the push-pull amplifier with a voltage outout for

- $\mathrm{X}=-3 \mathrm{~V}$
- $X=+3 V$
- $\mathrm{X}=0 \mathrm{~V}$

At 0 V , everything is zero

2) Determine the voltages and currents for a the push-pull amplifier with a current outout for

- $\mathrm{X}=-3 \mathrm{~V}$
- $X=+3 V$
- $\mathrm{X}=0 \mathrm{~V}$

Pick one of these two push-pull amplifiers (your choice) for your term project.
3) Check your comutations using PartSim for the amplfier you picked (votlage or current output)
$\leq \leftrightarrow Q \mid Q$

Page1 +
4) Build this amplifier in lab. Verify that is is operating correctly at $-3 \mathrm{~V}, 0 \mathrm{~V}$, and +3 V .

Instrumentation Amplfiers

5) Design an op-amp circuit to implement the following functions

$$
Y=-6 X
$$

$$
Y=6 X-20
$$

Temperature Sensors

Assume a thermistor has a temperature - resistance relationship of

$$
R=1000 \cdot \exp \left(\frac{3905}{T}-\frac{3905}{298}\right) \Omega
$$

6) Design a circuit so that the resistance is linear between 0C and +20 C

Assume the following circuit

0C:

$$
\mathrm{R}=3320.12 \text { Ohms }
$$

20C:

$$
\mathrm{R}=1250.59 \text { Ohms }
$$

The total resistance is

$$
R_{a b}=\left(\frac{R_{1}\left(R_{2}+R\right)}{R_{1}+R_{2}+R}\right)
$$

Find R1 and R2 so that the resistance at 10C is the midpoint between 0C and 20C

$$
R_{a b}(10 C)=\left(\frac{R_{a b}(20 C)+R_{a b}(0 C)}{2}\right)
$$

After some trial and error, a cost function that works is

```
function J = costR(Z)
// linearizing resistance
R1 = Z(1);
R2 = Z(2);
R0 = 3320.12;
R10 = 2002.83;
R20 = 1250.59;
Rab0 = (R1*(R2+R0)) / (R1 + R2 + R0);
Rab10 = (R1*(R2+R10)) / (R1 + R2 + R10);
Rab20 = (R1*(R2+R20)) / (R1 + R2 + R20);
E1 = 2*Rab10 - Rab0 - Rab20;
E2 = (R1 - 1000)/1000;
J = E1^2 + E2^2;
end
```

```
[E, Z] = leastsq(costR, [_RR2
Z = 1000.0003 504.52357
E = 2.991D-16
```

Plotting Rab from 0C to 20C

```
-->T = [0:0.01:20]';
-->K = T + 273;
-->R = 1000*exp( 3905 ./ k - 3905/298 )
-->plot(T,R)
```


-->Rab = R1*(R2+R) ./ (R1 + R2 + R); -->plot(T, Rab)

7) Design a circuit which outputs

- 0 V at 0 C ,
- 10 V at 20 C , and
- Proportional inbtween 0C and 20C

```
\(-->X=\) Rab ./ (700 + Rab) * 10;
-->plot(T, X)
-->xlabel('Temperature (C)');
-->ylabel('x (Volts)')
```



```
gain = (10 - 0) / (max(V1) - min(V1))
    gain = 18.31307
offset = V1(1)
    offset = 5.3106093
Y = gain*(offset - X);
plot(T,Y)
xlabel('Temperature (C)');
ylabel('Y (Volts)')
```


There are other solutions...

