ECE 321 - Homework \#3

Filters. Due Monday, December 2nd

1) X and Y are related by the following transfer function

$$
Y=\left(\frac{20}{(s+3)(s+5)}\right) X
$$

1a) What is the differential equation relating X and Y ?
Multiply out and cross multiply

$$
\left(s^{2}+8 s+15\right) Y=20 X
$$

'sY' means 'the derivative of Y '

$$
\frac{d^{2} y}{d t^{2}}+8 \frac{d y}{d t}+15 y=20 x
$$

or using different notation

$$
y^{\prime \prime}+8 y^{\prime}+15 y=20 x
$$

1b) Find $y(t)$ for

$$
x(t)=4+5 \sin (2 t)
$$

Use superpostion

$$
x(t)=4
$$

$$
x(t)=5 \sin (2 t)
$$

$$
\mathrm{s}=\mathrm{j} 0
$$

$$
\mathrm{s}=\mathrm{j} 2
$$

$$
\mathrm{X}=4+\mathrm{j} 0
$$

$$
X=0-j 5
$$

$$
Y=\left(\frac{20}{(s+3)(s+5)}\right)_{s=0} \cdot X
$$

$$
Y=\left(\frac{20}{(s+3)(s+5)}\right)_{s=j 2} \cdot X
$$

$$
Y=(1.333) \cdot(4+j 0)
$$

$$
Y=(0.5836-j 0.8488) \cdot(0-j 5)
$$

$$
Y=5.3333
$$

$$
Y=-4.2440-j 2.9178
$$

$$
y(t)=5.333
$$

$$
y(t)=-4.2440 \cos (2 t)+2.9178 \sin (2 t)
$$

The total answer is then

$$
y(t)=5.333-4.2440 \cos (2 t)+2.9178 \sin (2 t)
$$

2) Design a circuit to implement

$$
Y=\left(\frac{20}{(s+3)(s+5)}\right) X
$$

Option \#1

Option \#2

Check your design in PartSim

CircuitLab Schematic

3) Design a circuit to implement

$$
Y=\left(\frac{20}{(s+3+j 5)(s+3-j 5)}\right) X
$$

Check your design in PartSim

Circuit Option \#1: DC Gain = 1.97 (vs. 1.3333). Output $=1.48 \mathrm{Y}$

Circuit Option \#2: DC Gain = 1.3333.
First 100k resistor is replaced with its Thevenin equivalent: Rth $=100 \mathrm{k}$, Vth $=0.677$ Vin

Problem 4-8) You may use the following requirements or you may change them to match your term project
4) Requirements: Specify the requirements for a filter. As an example, a bass-boost could have the following requirements

Input:

- 10 Vpp sine wave
- $0-1 \mathrm{kHz}$
- Capable of driving 10 mA

Output:

- 10Vpp sine wave
- $0-1 \mathrm{kHz}$
- Capable of drving 10 mA

Relationship

- 0.9 < gain < 1.1 for frequencies between 20 Hz and 300 Hz
- gain < 0.1 for frequencies above 500 Hz (changed from 400 Hz so I don't need a 9th-order filter)

5) Analysis: Design a filter to meet these requirements. Include in your calculations

- The required number of poles
- The transfer function of your resulting design,
- A gain vs. frequency plot for your filter, and
- The gain at the design points (300 Hz and 500 Hz in the above example)

The number of poles you need is

$$
\begin{aligned}
& \left(\frac{300 \mathrm{hz}}{500 \mathrm{hz}}\right)^{n}<\left(\frac{0.1}{1.0}\right) \\
& n>\frac{\ln (0.1)}{\ln (0.60)}=4.50
\end{aligned}
$$

Let $\mathrm{n}=5$

A 5th-order Chebychev filter with a corner at 1 rad/sec has a transfer function of:

$$
G(s)=\left(\frac{\alpha}{(s+0.48)\left(s+0.76 \angle \pm 59.3^{0}\right)\left(s+1.06 \angle \pm 82^{0}\right)}\right)
$$

A 5th-order Chebychev filter with a corner at $2000 \mathrm{rad} / \mathrm{sec}$ has a transfer function of:

$$
G(s)=\left(\frac{\alpha}{(s+0.960)\left(s+1520 \angle \pm 59.3^{0}\right)\left(s+2120 \angle \pm 82^{0}\right)}\right)
$$

Checking the gain at 300 Hz and 500 Hz (design points)

$$
\begin{aligned}
& \left(\frac{\alpha}{(s+960)\left(s+1520 \angle \pm 59.3^{0}\right)\left(s+2120 \angle \pm 82^{0}\right)}\right)_{s=0}=1.0000 \\
& \left(\frac{\alpha}{(s+960)\left(s+1520 \angle \pm 59.3^{0}\right)\left(s+2120 \angle \pm 82^{0}\right)}\right)_{s=j 300 \cdot 2 \pi}=1.0174 \\
& \left(\frac{\alpha}{(s+960)\left(s+1520 \angle \pm 59.3^{0}\right)\left(s+2120 \angle \pm 82^{0}\right)}\right)_{s=j 500 \cdot 2 \pi}=0.059
\end{aligned}
$$

Plotting the gain vs. frequency in Matlab

```
p1 = 960;
p2 = 1520 * exp(j*59.3*pi/180);
p3 = conj(p2);
p4 = 2120 * exp(j*82*pi/180);
p5 = conj(p4);
alpha = abs(p1 * p2 * p3 * p4 * p5)
    alpha = 9.969D+15
f = [0:1000]';
w = 2*pi*f;
s = j*w;
```

 plot(f,abs(Gs),[300,500],[0.9, 0.1], 'rx')
xlabel('Frequency (Hz)');
ylabel('Gain');

6) Simulation: Test your circuit design in PartSim (or similar program) to verify your design is correct Circuit Design

$$
G(s)=\left(\frac{\alpha}{(s+960)\left(s+1520 \angle \pm 59.3^{0}\right)\left(s+2120 \angle \pm 82^{0}\right)}\right)
$$

Split in to three circuits

$$
\left(\frac{a}{s+960}\right)\left(\frac{b}{s+1520 \angle \pm 59.3^{0}}\right)\left(\frac{c}{s+2120 \angle \pm 82^{0}}\right)
$$

Stage 1:
Let $\mathrm{R}=10 \mathrm{k}$
$\frac{1}{R C}=960$
$C=0.104 \mu F$
Stage 2:
Let $\mathrm{R}=100 \mathrm{k}$
$\frac{1}{R C}=1520$
$C=6.57 n F$
$3-k=2 \cos \left(59.3^{0}\right)$
$k=1.97$
Stage 3: Let $\mathrm{R}=100 \mathrm{k}$

$$
\begin{aligned}
& \frac{1}{R C}=2120 \\
& C=4.72 n F \\
& 3-k=2 \cos \left(82^{0}\right) \\
& k=2.72
\end{aligned}
$$

This gives the following circuit

Running in CircuitLab

Checking some numbers

Frequency	Calculated Matlab	Simulated CircuitLab $/ 5.289$	Measured ECE Lab
0 Hz	1.000	1.000	
200 Hz	1.006	0.9879	
300 Hz	1.017	0.9758	
500 Hz	0.059	0.0577	
1000 Hz	0.001	0.0012	

7) Validation: Build your circuit and take measurement to show that it does (or does not) meet your requirements
