ECE 321 - Final - Name

R = 2140 (Your Birth Month)*1000 + (Your Birthdate)*10

- For example, Feb 14th would be $\mathrm{R}=2140$ Ohms.

1) Amplifiers

1a) Determine the equation for the line, $\mathrm{Y}=\mathrm{AX}+\mathrm{B}$
1b) Design an op-amp circuit to implement $Y=f(X)$. Include R in your answer somewhere (birth month \& date)

$$
\begin{aligned}
& \text { slope }=\left(\frac{-5}{6}\right) \\
& y=\frac{-5}{6} x+3.2
\end{aligned}
$$

Rewrite as

$$
Y=\frac{5}{6}(3.84-x)
$$

2) Push-Pull Amplifier

The following circuit can output -5 V to +5 V using only a single 10 V power supply. Determine the votlges and currents when Vin $=3 \mathrm{~V}$. Assume $3904 / 3906$ transistors

- $\beta=200$
- \quad Vbe I $=0.7 \mathrm{~V}$

R	V 1	V 2	V 3	V 4	I
$\mathbf{2 1 4 0}$	$\mathbf{2 . 3 0 V}$	3.00 V	5.00 V	5.70 V	-934 uA $2 \mathrm{~V} / 2140 \mathrm{hms}$

$R=$ birth month * $1000+$ birth day * 10. Feb 14th $=2140$ Ohms

3) Instrumentation Amplifier

An RTD (type of temperature sensor) has a resistance - temperature relationship of

$$
R T D=2000 \cdot(1+0.0043 T) \Omega
$$

where T is the temperature in degrees C . Design a circuit which outputs

- 0 V at 0 C and
- 10 V at +25 C

Let R be your birth month * $1000+$ birth day * 10. Feb 14th $=2140$ Ohms

At 0C

- RTD $=2000$
- $\mathrm{X}=4.831 \mathrm{~V}$
- $\mathrm{Y}=0 \mathrm{~V}$

At +25 C

- $\mathrm{RTD}=2215 \mathrm{Ohms}$
- $X=5.086 \mathrm{~V}$
- $\mathrm{Y}=10 \mathrm{~V}$

$$
\text { gain }=\left(\frac{10 V-0 V}{5.086 V-4.831 V}\right)=39.18
$$

4) Filter: Analysis

Assume X and Y are related by the following transfer function

$$
Y=\left(\frac{500(s+2)}{(s+10)(s+30)}\right) X
$$

a) What is the differential equation relating X and Y ?
b) Determine $\mathrm{y}(\mathrm{t})$ assuming

$$
x(t)=5+2 \cos (\omega t)+4 \sin (\omega t)
$$

where ω is your birth date (1..31)
DC:

$$
\begin{aligned}
& s=0 \\
& X=5 \\
& Y=\left(\frac{500(s+2)}{(s+10)(s+30)}\right)_{s=0} \cdot(5+j 0) \\
& Y=16.67 \\
& y(t)=16.67
\end{aligned}
$$

AC: Feb 14th:

$$
\begin{aligned}
& s=j 14 \\
& X=2-j 4 \\
& Y=\left(\frac{500(s+2)}{(s+10)(s+30)}\right)_{s=14} \cdot(2-j 4) \\
& Y=26.879-j 48.580 \\
& y(t)=26.879 \cos (14 t)+48.580 \sin (14 t)
\end{aligned}
$$

Total answer: DC +AC

$$
y(t)=16.67+26.879 \cos (14 t)+48.580 \sin (14 t)
$$

5) Filter: Design

Design a circuit so that the gain is

- $0.9<$ gain < 1.1 for frequencies below $10 \mathrm{rad} / \mathrm{sec}$
- gain <0.3 for frequencies above $15 \mathrm{rad} / \mathrm{sec}$

Determine the gain of your final design at 10 and $15 \mathrm{rad} / \mathrm{sec}$
Number of poles needed:

$$
\begin{aligned}
& \left(\frac{10}{15}\right)^{n}<0.3 \\
& n>2.969
\end{aligned}
$$

Let $\mathrm{N}=4$
Assume a corner at $10 \mathrm{rad} / \mathrm{sec}$
Assume a Chebychev filter

$$
G(s)=\left(\frac{6387}{\left(s+7.2 \angle \pm 38.5^{0}\right)\left(s+11.1 \angle \pm 77.8^{0}\right)}\right.
$$

In Matlab

```
p1 = 7.2*exp(j*38.5*pi/180);
p2 = conj(p1);
p3 = 11.1*exp(j*77.8*pi/180);
p4 = conj(p3);
G = zpk([],[-p1,-p2,-p3,-p4],abs(p1*p2*p3*p4))
        6387.2064
(s^2 + 11.27s + 51.84) (s^2 + 4.691s + 123.2)
abs(evalfr(G, j*10))
ans = 0.995712822369479
abs(evalfr(G, j*15))
ans = 0.213292607621345
```


6) Filter Design

Design a circuit to imlement the following filter:

$$
Y=\left(\frac{10.000}{\left(s^{2}+10 s+R\right)\left(s^{2}+20 s+2 R\right)}\right) X
$$

where R is your birth month * $1000+$ birth date * 10 . For example, Feb $14=2140$

$$
\begin{aligned}
& Y=\left(\frac{10.000}{\left(s^{2}+10 s+2140\right)\left(s^{2}+20 s+4280\right)}\right) X \\
& Y=\left(\frac{10,000}{\left(s+46.260 \angle \pm 83.79^{0}\right)\left(s+65.42 \angle \pm 81.21^{0}\right)}\right.
\end{aligned}
$$

For the first stage

$$
\begin{aligned}
& \frac{1}{R C}=46.260 \\
& \mathrm{R}=100 \mathrm{k}, \mathrm{C}=216 \mathrm{nF} \\
& 3-k=2 \cos \left(83.79^{0}\right) \\
& k=2.784
\end{aligned}
$$

For the second stage

$$
\begin{aligned}
& \frac{1}{R C}=65.42 \\
& \mathrm{R}=100 \mathrm{k}, \mathrm{C}=153 \mathrm{nF} \\
& 3-k=2 \cos \left(81.21^{0}\right) \\
& k=2.594
\end{aligned}
$$

- The DC gain should be 0.002184 .
- It's actually k1*k2 = 7.222
- The output is $3307^{*} \mathrm{y}$

7) CE Amplifier (DC)

Determine the Q-point (Vc, Rc) for the following transistor circuit. Assume a 3904 transistor

- $\beta=200$
- \mid Vbe $\mid=0.7$

R	Vb	Rb	Vce	Ic
$\mathbf{7 1 4 0}$	$\mathbf{1 . 4 8 1 1 V}$	$\mathbf{6 1 7 1}$	$\mathbf{1 0 . 4 5 7 5 V}$	$\mathbf{2 5 6 . 4 m A}$

$R=$ birth month * $1000+$ birth day * 10. For example, Feb 14 th $=2140$ Ohms

$R_{b}=R_{1} \| R=6171 \Omega$
$V_{b}=\left(\frac{R}{R+50 k}\right) 12 \mathrm{~V}=1.4811 \mathrm{~V}$
$I_{b}=\left(\frac{1.4811 \mathrm{~V}-0.7 \mathrm{~V}}{6171+201(3000)}\right)=1.2822 \mu \mathrm{~A}$
$I_{c}=200 I_{b}=256.4 \mathrm{~mA}$
$V_{c e}=12-6000 I_{c}-3000 I_{b}=10.4575 \mathrm{~V}$

8) CE Amplifier (AC)

Draw the small signal model for this amplifier and the resulting 2-port model. Assume 3904 transistors

- $\beta=200$
- $\quad \mathrm{Vbe}=0.7 \mathrm{~V}$

R	Rin	Ai	Rout	Ao
7140	5356	0	3000	-14.79

$R=$ birth month * $1000+$ birth day * 10. For example, Feb 14th $=2140$ Ohms

$$
\begin{aligned}
& r_{f}=\frac{0.052}{I_{b}}=\frac{0.052}{1.2822 \mu A}=40.55 \mathrm{k} \Omega \\
& R_{\text {in }}=7140| | 50 \mathrm{k} \mid 40.55 \mathrm{k}=5356 \Omega \\
& R_{\text {out }}=R_{c}=3000 \\
& A_{0}=-\frac{\beta R_{c}}{r_{f}}=-14.79
\end{aligned}
$$

