ECE 321 - Final - Name

$R=\ldots \quad\left(\right.$ Your Birth Month)* $1000+\left(\right.$ Your Birthdate)* ${ }^{\star} 10$

- For example, Feb 14th would be $\mathrm{R}=2140$ Ohms.

1) Amplifiers

1a) Determine the equation for the line, $\mathrm{Y}=\mathrm{AX}+\mathrm{B}$
1b) Design an op-amp circuit to implement $Y=f(X)$. Include R in your answer somewhere (birth month \& date)

2) Push-Pull Amplifier

The following circuit can output -5 V to +5 V using only a since 10 V power supply. Determine the votlges and currents when Vin $=3$ V. Assume $3904 / 3906$ transistors

- $\beta=200$
- \mid Vbe $\mathrm{I}=0.7 \mathrm{~V}$

R	V1	V2	V3	V4	I5

$R=$ birth month * $1000+$ birth day * 10. Feb 14th $=2140$ Ohms

3) Instrumentation Amplifier

An RTD (type of temperature sensor) has a resistance - temperature relationship of

$$
R T D=2000 \cdot(1+0.0043 T) \Omega
$$

where T is the temperature in degrees C . Design a circuit which outputs

- 0 V at 0 C and
- 10 V at +25 C

Let R be your birth month * $1000+$ birth day * 10. Feb 14th $=2140$ Ohms

4) Filter: Analysis

Assume X and Y are related by the following transfer function

$$
Y=\left(\frac{500(s+2)}{(s+10)(s+30)}\right) X
$$

a) What is the differential equation relating X and Y ?
b) Determine $y(t)$ assuming

$$
x(t)=5+2 \cos (\omega t)+4 \sin (\omega t)
$$

where $\boldsymbol{\omega}$ is your birth date (1..31)

5) Filter: Design

Design a circuit so that the gain is

- $0.9<$ gain < 1.1 for frequencies below $10 \mathrm{rad} / \mathrm{sec}$
- gain <0.3 for frequencies above $15 \mathrm{rad} / \mathrm{sec}$

Determine the gain of your final design at 10 and $15 \mathrm{rad} / \mathrm{sec}$

6) Filter Design

Design a circuit to imlement the following filter:

$$
Y=\left(\frac{10.000}{\left(s^{2}+10 s+R\right)\left(s^{2}+20 s+2 R\right)}\right) X
$$

where R is your birth month * $1000+$ birth date * 10 . For example, Feb $14=2140$

7) CE Amplifier (DC)

Determine the Q-point (Vc, Rc) for the following transistor circuit. Assume a 3904 transistor

- $\beta=200$
- \mid Vbe $\mid=0.7$

R	Vb	Rb	Vce	Ic

$R=$ birth month * $1000+$ birth day * 10. For example, Feb 14th $=2140$ Ohms

8) CE Amplifier (AC)

Draw the small signal model for this amplifier and the resulting 2-port model. Assume 3904 transistors

- $\beta=200$
- $\quad \mathrm{Vbe}=0.7 \mathrm{~V}$

R	Rin	Ai	Rout	Ao

$R=$ birth month * $1000+$ birth day * 10. For example, Feb 14th $=2140$ Ohms

