ECE 321-Quiz \#2 - Name

Sensors \& Filters
Calculators, internet, Matlab permitted.

1) A thermistor has a temperature-resistance relationship of (Digikey part number 495-75201-ND) where T is the temperature in degrees C .

$$
R=10,000 \cdot \exp \left(\frac{3980}{T+273}-\frac{3980}{298}\right) \Omega
$$

Design a circuit which outputs

- 0 V at 25 C and
- 10 V at 100 C

Note: A linearizing circuit isn't required.
Let $\mathrm{R}=2500$
$25 \mathrm{C}(\mathrm{Y}=0 \mathrm{~V})$

- $\mathrm{R}=10 \mathrm{k}$ Ohms
- $X=8.000 \mathrm{~V}$

100C: $(\mathrm{Y}=10 \mathrm{~V})$

- $\mathrm{R}=681.9 \mathrm{Ohms}$
- $X=2.168 \mathrm{~V}$

As X goes down, Y goes up. Connect to the minus input

$$
\operatorname{gain}=\left(\frac{10 V-0 V}{8 V-2.168 V}\right)=1.715
$$

$\mathrm{Y}=0 \mathrm{~V}$ when $\mathrm{X}=8.00 \mathrm{~V}$
Offset $=8.00 \mathrm{~V}$

2) A thermistor has a temperature-resistance relationship of

$$
R=10,000 \cdot \exp \left(\frac{3980}{T+273}-\frac{3980}{298}\right) \Omega
$$

where T is the temperature in degrees C . Assume the thermistor is used with a voltage divider so that

$$
X=\left(\frac{R}{R+400}\right) 10 V
$$

2a) Determine the least sqares curve fit for temperature as

$$
T=a X+b
$$

Assume the same temperature range as problem \#1 (your answers will vary depending upon what temperature range you choose)

```
T = [25:0.1:100]';
R = 10000 * exp(3980 ./ (T+273) - 3980/298);
X = R ./ (R+400)*10;
B = [X, X.^0];
A = inv(B'*B)*B'*T
    -21.7887
    243.4206
plot(X,T,X,B*A,'r')
```

 \(T=-21.7887 X+243.42\)
 50
 2b) Determine the least sqares curve fit for temperature as

$$
T=a X^{3}+b X^{2}+c X+d
$$

Again, assuming (25C, 100C), (answers vary depending upon the temperature range)

```
>>B}=[X.^^3, X.^^2, X, X.^^0]
>>A=inv(B'*B)* B'*T
    -1.7333
    37.8345
-290.5995
    863.6654
>> plot(X,T,X,B*A,'r')
```

$$
T \approx-1.733 X^{3}+37.82 X^{2}-280.599 X+863.66
$$

3) X and Y are related by the following transfer function

$$
Y=\left(\frac{50}{(s+5)(s+7)}\right) X
$$

3a) What is the differential equation relating X and Y ?

$$
\begin{aligned}
& (s+5)(s+7) Y=(50) X \\
& \left(s^{2}+12 s+35\right) Y=50 X \\
& y^{\prime \prime}+12 y^{\prime}+35 y=50 x
\end{aligned}
$$

3b) Determine $y(t)$ assuming

$$
x(t)=4+5 \cos (6 t)+7 \sin (6 t)
$$

Use superposition and phasor analysis
$\mathrm{x}(\mathrm{t})=4$

$$
\begin{aligned}
& s=0 \\
& X=4+j 0 \\
& Y=\left(\frac{50}{(s+5)(s+7)}\right)_{s=0}(4+j 0) \\
& Y=5.714 \\
& y(t)=5.714
\end{aligned}
$$

$$
x(t)=5 \cos (6 t)+7 \sin (6 t)
$$

$$
s=j 6
$$

$$
X=5-j 7
$$

$$
Y=\left(\frac{50}{(s+5)(s+7)}\right)_{s=j 6}(5-j 7)
$$

$$
Y=-4.908-j 3.404
$$

$$
y(t)=-4.908 \cos (6 t)+3.404 \sin (6 t)
$$

The total answer is $\mathrm{DC}+\mathrm{AC}$

$$
y(t)=5.714-4.908 \cos (6 t)+3.404 \sin (6 t)
$$

4) Design a circuit to implement the following filter:

$$
Y=\left(\frac{500}{(s+2)(s+10)(s+20)}\right) X
$$

Use a 3-stage RC filter with a gain

$$
\begin{array}{lll}
\frac{1}{R_{1} C_{1}}=2 & \mathrm{R} 1=10 \mathrm{k} & \mathrm{C} 1=50 \mathrm{uF} \\
\frac{1}{R_{2} C_{2}}=10 & \mathrm{R} 2=100 \mathrm{k} & \mathrm{C} 2=1 \mathrm{uF} \\
\frac{1}{R_{3} C_{3}}=20 & \mathrm{R} 3=1 \mathrm{M} & \mathrm{C} 3=50 \mathrm{nF}
\end{array}
$$

The DC gain is 1.25 . Add an amplifier with a gain of 1.25

5) Design a circuit to implement the following filter:

$$
Y=\left(\frac{500}{(s+2)(s+3+j 10)(s+3-j 10)}\right) X
$$

Express as

$$
\begin{gathered}
Y=\left(\frac{2}{s+2}\right)\left(\frac{250}{s+10.44 \angle \pm 73.3^{0}}\right) \\
\frac{1}{R_{1} C_{1}}=2 \quad \text { Let } \mathrm{R} 1=10 \mathrm{k} \quad \mathrm{C} 1=50 \mathrm{uF} \\
\frac{1}{R_{2} C_{2}}=10.44 \text { Let } \mathrm{R} 2=100 \mathrm{k} \quad \mathrm{C} 2=958 \mathrm{nF} \\
3-k=2 \cos \left(73.3^{0}\right) \\
k=2.425
\end{gathered}
$$

The resulting DC gain is 2.45
The DC gain is supposed to be 2.294
Call the output 1.057 Y (or reduce it by 5.7%)

6) Give the transfer function for a 6th order Butteworth filter with

- A DC gain of 1.000
- A corner at $20 \mathrm{rads} / \mathrm{c}$

The amplitude of the poles is $20 \mathrm{rad} / \mathrm{sec}$
The angle between poles is

$$
\begin{aligned}
& \theta=\frac{180^{0}}{6}=30^{0} \\
& G(s)=\left(\frac{20^{6}}{\left(s+20 \angle \pm 15^{0}\right)\left(s+20 \angle \pm 45^{0}\right)\left(s+20 \angle \pm 75^{0}\right)}\right)
\end{aligned}
$$

