ECE 321-Quiz \#2 - Name

Sensors \& Filters

Calculators, internet, Matlab permitted.

1) A thermistor has a temperature-resistance relationship of (Digikey part number 495-75201-ND) where T is the temperature in degrees C .

$$
R=10,000 \cdot \exp \left(\frac{3980}{T+273}-\frac{3980}{298}\right) \Omega
$$

Design a circuit which outputs

- 0 V at 25 C and
- 10 V at 100 C

Note: A linearizing circuit isn't required.

2) A thermistor has a temperature-resistance relationship of

$$
R=10,000 \cdot \exp \left(\frac{3980}{T+273}-\frac{3980}{298}\right) \Omega
$$

where T is the temperature in degrees C . Assume the thermistor is used with a voltage divider so that

$$
X=\left(\frac{R}{R+400}\right) 10 V
$$

2a) Determine the least sqares curve fit for temperature as

$$
T=a X+b
$$

2b) Determine the least sqares curve fit for temperature as

$$
T=a X^{3}+b X^{2}+c X+d
$$

3) X and Y are related by the following transfer function

$$
Y=\left(\frac{50}{(s+5)(s+7)}\right) X
$$

3a) What is the differential equation relating X and Y ?

3b) Determine $y(t)$ assuming

$$
x(t)=4+5 \cos (6 t)+7 \sin (6 t)
$$

4) Design a circuit to implement the following filter:

$$
Y=\left(\frac{500}{(s+2)(s+10)(s+20)}\right) X
$$

5) Design a circuit to implement the following filter:

$$
Y=\left(\frac{500}{(s+2)(s+3+j 10)(s+3-j 10)}\right) X
$$

6) Give the transfer function for a 6th order Butteworth filter with

- A DC gain of 1.000
- A corner at 20 rads/c

