ECE 321 - Homework \#2

Tmperature and Calibration. Due Monday, November 16th
Please make the subject "ECE $321 \mathrm{HW} \# 2$ " if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Temperature Sensors: Voltage Output

1) A MF52A1103F3380 thermistor from Digikey has a temperature - resistance relationship of

$$
R=10,000 \exp \left(\frac{3380}{T+273}-\frac{3380}{298}\right) \Omega
$$

where T is the temperature in degrees Celsius.

1) Design a linearizing circuit so that the resistance is approximately linear from 0 C to +30 C . Plot the resulting resitance vs. temperature relationship.

In Matlab, set the cost equal to the square of the error terms minus the resulting spread in Z (in Ohms)

```
function [ J ] = costR( Z )
    a = Z(1);
    b = Z(2);
    R0 = 1e4 * exp(3380/273 - 3380/298);
    R15 = 1e4 * exp(3380/288 - 3380/298);
    R30 = 1e4 * exp(3380/303 - 3380/298);
    Z0 = (R0 + a)*b / (R0 + a + b);
    Z15 = (R15 + a)*b / (R15 + a + b);
    Z30 = (R30 + a)*b / (R30 + a + b);
    e1 = Z0 + Z30 - 2*Z15;
    e2 = a - b;
    J = e1^2 + e2^2 - abs(Z30 - Z0);
    T = [0:0.1:30]';
    R = 1e4 * exp(3380./(T+273) - 3380/298);
    Z = (R + a)*b ./ (R + a + b);
    plot(T,Z);
    pause(0.01);
    end
>> [Z,e] = fminsearch('costR',[5000,5000])
Z =5490.7 5490.8
e = -781.1555
```

The resulting resistance vs. temperature is then
$\mathrm{Ra}=5490$;
$\mathrm{Rb}=5490$;
$\mathrm{T}=[0: 0.1: 30]^{\prime}$;
$R=10000$ * $\exp (3380$./ ($T+273)-3380 / 298) ;$
$Z=(R+R a) * R b . /(R+R a+R b) ;$
plot(T, Z)
plot(T([1,301]), Z([1,301]),'r')
xlabel('Temperature (C)');
ylabel('Ohms');

Resulting resistance vs. temperature with the linearizing circuit

2) Using the linearizing circuit from part 1 , design a circuit which outputs

- -10 V at 0 C
- +10 V at +30 C
- Proportional in between.

Plot the resulting output voltage vs. temperature.
At 0C: $\mathrm{Y}=-10 \mathrm{~V}$

- $Z=4722.4$ Ohms
- $\mathrm{X}=2.9223 \mathrm{~V}$

At +30C: Y $=+10 \mathrm{~V}$

- $\mathrm{Z}=3926.6 \mathrm{Ohms}$
- $X=2.5727 \mathrm{~V}$

As X goes down, Y goes up

- Connect to the minus input

At midband, the output is 0 V

- offset $=\left(\frac{\max (X)+\min (X)}{2}\right)=2.7475 \mathrm{~V}$

The gain needed is

$$
\text { gain }=\left(\frac{\text { change in output }}{\text { change in input }}\right)=\left(\frac{10 \mathrm{~V}-(-10 \mathrm{~V})}{2.9223 \mathrm{~V}-2.5257 \mathrm{~V}}\right)=57.2
$$

The resulting voltage vs. temperature is then

```
a = Z(1);
b = Z(2);
T = [0:0.1:30]';
R = 1e4 * exp(3380./(T+273) - 3380/298);
Z = (R + a)*b ./ (R + a + b);
X = Z ./ (Z + 10000) * 10;
offset = (max(X) + min(X)) / 2
offset = 2.7475
gain = (10 - (-10)) / (max(X) - min(X))
gain = 57.2000
Y = gain*(offset - X);
plot(T,Y,[0,30],[-10,10],'r');
xlabel('Temperature (C)');
ylabel('Y (Volts)');
```


3) Determine a caliration funciton of the form

$$
T=a V+b
$$

to determine the temperature based upon the output voltage from your circuit in problem \#2

- What is the maximum calibration error?

```
>> B = [Y, Y.^0];
>> A = inv(B'*B)*B'*T
A =
    1.4823
    15.4010
>> plot(Y,T,'b',Y,B*A,'r');
>> xlabel('Voltage at Y');
>> ylabel('Temperature (C)')
>> max(abs(T - B*A))
ans = 0.5779
```

The maximum error is 0.5779 C

4) Determine a calibration function of the form

$$
T=a V^{3}+b V^{2}+c V+d
$$

to determine the temperature based upon the output voltage from your circuit in problem \#2

- What is the maximum calibration error?

```
>> B = [Y.^3, Y.^2. Y, Y.^0];
>> A = inv(B'*B)*B'*T
A =
    0.0005
    -0.0058
        1.4519
    15.6017
>> plot(Y,T,'b',Y,B*A,'r');
>> ylabel('Temperature (C)')
>> xlabel('Voltage at Y');
>> max(abs(T - B*A))
ans =
    0.0215
```


Temperature Sensors: Frequency Output

5) Determine the frequency of the following 555 timer with R being the linearizing circuit from problem \#2.

Note: For this 555 timer circuit

```
\(t_{\text {on }}=(100+Z) \cdot C \cdot \ln (2) \quad C\) charges through R1 and R2
\(t_{\text {off }}=Z \cdot C \cdot \ln (2) \quad C\) discharges through \(R 2\)
\(f=\frac{1}{T} \mathrm{~Hz}\)
```

where Z is the impedance of the linearizing circuit from problem \#2.

```
C = 0.1e-6;
Ton = (100 + Z)*C*log(2);
Toff= Z*C*log(2);
Hz = 1 ./ (Ton + Toff);
plot(T,Hz)
xlabel('Temperature (C)');
ylabel('Frequency (Hz)')
```


Temperature - Frequency relationship for a 555 timer with a thermistor
6) In CircuitLab, simulate the 555 timer at $\mathrm{T}=15 \mathrm{C}$.

- Does the simulated frequency match your computed frequency?

At 15C,

- $\mathrm{R}=5247$ Ohms
- $Z=3633$ Ohms
- Perion $($ ton + toff $)=510.5$ us
- $\mathrm{f}=1959 \mathrm{~Hz}$

Period $=555$ us $(1800 \mathrm{~Hz})$ vs. 1950 Hz computed
7) Determine a calibration function of the form

$$
{ }^{0} C=a \cdot H z+b
$$

where Hz is the frequency of the oscillator over the temperature range of 0 C to 30 C

```
B = [Hz, Hz.^0];
A = inv(B'*B)*B'*T
            0.0980799
    -147.25696
plot(Hz,T,'b',Hz,B*A,'r')
xlabel('Frequency (Hz)');
ylabel('Temperature (C)');
max(abs(T - B*A))
    1.0092957
```

The maximum calibration error is 1.009 degrees C over the range of 0 C to +30 C

Temperature - Frequency relationship (blue) and linear curve fit (red)

