ECE 321 - Homework \#3

Filters. Due Monday, November 30th

1) X and Y are related by the following transfer function

$$
Y=\left(\frac{30}{(s+2)(s+6)}\right) X
$$

1a) What is the differential equation relating X and Y ?

$$
\begin{aligned}
& ((s+2)(s+6)) Y=(30) X \\
& \left(s^{2}+8 s+12\right) Y=30 X
\end{aligned}
$$

meaning

$$
y^{\prime \prime}+8 y^{\prime}+12 y=30 x
$$

1b) Find $y(t)$ for

$$
x(t)=4+5 \sin (2 t)
$$

Use superposition:
DC) $x(t)=4$

$$
s=0
$$

$$
Y=\left(\frac{30}{(s+2)(s+6)}\right)_{s=0}(4+j 0)
$$

$$
Y=10
$$

$$
y(t)=10
$$

AC) $x(t)=5 \sin (2 t)$
$s=j 2$
$X=0-j 5$
$Y=\left(\frac{30}{(s+2)(s+6)}\right)_{s=j 2}(0-j 5)$
$Y=-7.5-j 3.75$
$y(t)=-7.5 \cos (2 t)+3.75 \sin (2 t)$

The total answer is $\mathrm{DC}+\mathrm{AC}$

$$
y(t)=10-7.5 \cos (2 t)+3.75 \sin (2 t)
$$

2) Design a circuit to implement

$$
Y=\left(\frac{20}{(s+2)(s+6)}\right) X
$$

Check your design in CircuitLab
Use a 2-stage RC filter with an amplifier: R1 $=10 \mathrm{k}, \mathrm{R} 2=100 \mathrm{k}$

$$
\begin{array}{ll}
\frac{1}{R_{1} C_{1}}=2 & C_{1}=50 \mu F \\
\frac{1}{R_{2} C_{2}}=6 & C_{2}=1.67 \mu F
\end{array}
$$

The DC gain is 1.667 (20/12). Add a non-inverting amplifier with a gain of 1.667

3) Design a circuit to implement

$$
Y=\left(\frac{20}{(s+1+j 6)(s+1-j 6)}\right) X=\left(\frac{20}{s^{2}+2 s+37}\right) X=\left(\frac{20}{\left(s+6.08 \angle \pm 80.5^{0}\right)}\right) \lambda
$$

Check your design in CircuitLab

$$
\frac{1}{R C}=6.08
$$

Let $\mathrm{C}=1 \mathrm{uF}, \mathrm{R}=164 \mathrm{k}$

$$
\begin{aligned}
& 3-k=2 \cos \left(80.5^{0}\right) \\
& k=2.671
\end{aligned}
$$

Problem 4-8) Add a filter to the amplifier from homework set \#1

4) Requirements: Specify the requirements for a filter.

Option \#1: Low Pass Filter

- 0.9 < gain < 1.1 for frequencies between 20 Hz and 250 Hz
- gain <0.2 for frequencies above 500 Hz

5) Analysis: Design a filter to meet these requirements. Include in your calculations

The number of poles needed are

$$
\begin{aligned}
& \left(\frac{250 \mathrm{~Hz}}{500 \mathrm{~Hz}}\right)^{n}<0.2 \\
& n>2.32
\end{aligned}
$$

Let $\mathrm{n}=3$. Assume a Chebychev fitler. For a corner at $1 \mathrm{rad} / \mathrm{sec}$

$$
G(s)=\left(\frac{1}{(s+0.85)\left(s+1.21 \angle \pm 69.5^{0}\right)}\right)
$$

For a corner at 238 Hz (guess)

$$
G(s)=\left(\frac{k}{(s+1275)\left(s+1815 \angle \pm 69.5^{0}\right)}\right)
$$

Checking in Matlab if this meets the requirements

```
>> f = [0:10:1000]';
>> w = 2*pi*f;
>> s = j*W;
>> p1 = 1500 * 0.85;
>> p2 = 1500 * 1.21 * exp(j*69.5*pi/180);
>> p3 = conj(p2);
>> G = p1*p2*p3 ./ ( (s+p1).* (s+p2).*(s+p3) );
>> plot(f,abs(G),[250,500],[0.9,0.2],'rx');
```


That works. To build this filter, do it in three stages

$$
\left(\frac{1}{R C}\right)=1275
$$

$$
\mathrm{R}=10 \mathrm{k}, \mathrm{C}=78 \mathrm{nF}
$$

$$
\left(\frac{1}{R C}\right)=1815
$$

$$
\mathrm{R}=100 \mathrm{k}, \mathrm{C}=5.5 \mathrm{nF}
$$

$$
3-k=2 \cos \left(69.5^{0}\right)
$$

$$
k=2.30
$$

6) Simulation: Test your circuit design in CircuitLab (or similar program) to verify your design is correct

7) Validation: Build your circuit and take measurement to show that it does (or does not) meet your requirements

Hz					
Gain (calculated)					
Gain (measured)					

8) Demo. Demonstrate your filter (live on zoom or with a video)
