1. OpAmp Circuits: Determine y as a function of A, B, and C. Assume

- Ideal op-amps
- R $1100+100^{*}$ (your birth month) + (your birth day). May 14th would give R = 1614 Ohms

R	
$1100+100^{*} \mathrm{mo}+$ day	$Y=\mathrm{aA}+\mathrm{bB}+\mathrm{cC}$
$\mathbf{1 6 1 4}$	$Y=-1.345 \mathrm{~A}=2.0175 \mathrm{~B}+1.614 \mathrm{C}$

W is a weighted average. Picking the least-common multiple (6k)

$$
\begin{aligned}
& W=\left(\frac{2 A+3 B+6 \cdot 0}{12}\right)=\left(\frac{1}{6}\right) A+\left(\frac{1}{4}\right) B \\
& X=5 W \\
& Y=1.614(C-X)
\end{aligned}
$$

Putting it all together

$$
Y=1.614 C-1.345 A-2.0175 B
$$

2. Push-Pull: Determine the voltages and currents for the following push-pull amplifier. Assume

- $R=1100+100 *($ birth month $)+($ birth day $)$. May 14th gives $R=1614$ Ohms
- $\mid \mathrm{Vce} \mathrm{I}=0.7 \mathrm{~V}$ (ideal silicon diodes)
- $\beta=30$

R $1100+100^{*} \mathrm{~m}+$ day	V 1	V 2	V 3	I 4	I
$\mathbf{1 6 1 4}$	$\mathbf{3 . 0 0 V}$	$\mathbf{8 . 5 1 4 V}$ $\mathrm{V} 3+0.7$	$\mathbf{7 . 8 1 4 V}$ varies with R	$\mathbf{1 4 . 8 5 m A}$ $(15+1 \mathrm{~mA}) / 31$	$\mathbf{4 6 1 m A}$

3. Instrumentation Amplifier: Assume a thermistor has the temperature - resistance relationship of

$$
R_{t}=3000 \cdot \exp \left(\frac{4000}{T+273}-\frac{4000}{298}\right) \Omega
$$

Design a circuit which outputs

- +20 V at +20 C , and
- -10 V at -10 C

Assume

- $\mathrm{R}=1100+100$ (your birth month) + (your birth date)

20C

- $\mathrm{Rt}=$ 3772.2 Ohms
- $\mathrm{X}=7.0035 \mathrm{~V}$
-10C
- $\mathrm{Rt}=17,902 \mathrm{Ohms}$
- $\mathrm{X}=9.173 \mathrm{~V}$

Y goes up as X goes down. Connect to the minus input

$$
\text { gain }=\left(\frac{30 V}{9.173 V-7.0035 V}\right)=13.82
$$

Offset: At 20C, $\mathrm{Y}=20 \mathrm{~V}$

$$
\begin{aligned}
& Y=20 V=13.82(A-7.0035 V) \\
& A=8.4498
\end{aligned}
$$

4. Filters: Let

- R $1100+100^{*}$ (your birth month) + (your birth day). May 14th would give $\mathrm{R}=1614$ Ohms Find the transfer function from X to Y

R	
$1100+100^{*} \mathrm{mo}+$ day	Transfer Function $\mathrm{Y}=\mathrm{G}(\mathrm{s})^{*} \mathrm{X}$
$\mathbf{1 6 1 4}$	$\left(\frac{s}{s+100}\right) \mathbf{(4)}\left(\frac{1.5 \cdot 619^{2}}{\left(s+619 \angle 41.4^{0}\right)\left(s+619 \angle-41.4^{0}\right)}\right)$

$$
\begin{aligned}
& A=\left(\frac{R}{R+\frac{1}{C s}}\right) X=\left(\frac{R C s}{R C s+1}\right) X=\left(\frac{s}{s+100}\right) X \\
& B=4 A
\end{aligned}
$$

complex poles

$$
\begin{aligned}
& \mid \text { pole } \left\lvert\,=\left(\frac{1}{R C}\right)=\left(\frac{1}{1614 \cdot 1 \mu F}\right)=619\right. \\
& 3-k=2 \cos \theta \\
& 3-1.5=2 \cos \theta \\
& \theta=41.4^{0} \\
& Y=\left(\frac{1.5 \cdot 619^{2}}{\left(s+619 \angle+41.4^{0}\right)}\right) B
\end{aligned}
$$

5. CE Amplifiers (DC analysis): Determine the Thevenin equivalent of R1 and R2 as well as the operating point for the following transistor circuit. Assume

- $\operatorname{Re}=1100+100^{*}($ your birth month $)+($ your birth date $)$
- $\beta=30$
- $\quad \mid$ Vce $\mid=0.7 \mathrm{~V}$

Re $1100+100^{\circ} \mathrm{mo}+$ day	Vb	Rb	Vce	Ic
$\mathbf{1 6 1 4}$	4.80 V	$\mathbf{1 2 k}$	$\mathbf{0 . 2 V}$ saturated	1.55 mA saturated

$$
\begin{aligned}
& I_{b}=\left(\frac{4.80 \mathrm{~V}-0.7 \mathrm{~V}}{12 k+1614.31}\right)=66.09 \mu \mathrm{~A} \\
& I_{c}=30 I_{b}=1.983 \mathrm{~mA} \\
& V_{c}=12-6 k \cdot I_{c}=0.1033 \mathrm{~V} \\
& V_{e}=1614 \cdot\left(I_{b}+I_{c}\right)=3.307 \mathrm{~V} \\
& V_{c e}=V_{c}-V_{e}=-3.204 \mathrm{~V}
\end{aligned}
$$

which tells you that the transistor is saturated
6. 2-Port model: Determine the 2-port parameters for the following circuit. Assume

- $\mathrm{R}=1100+100^{*}($ your birth month $)+($ your birth date $)$ Ohms

R $1100+0^{\circ} \mathrm{m}+$ day	Rin	Ai	Rout	Ao
$\mathbf{1 6 1 4}$	$\mathbf{2 1 . 1 k}$	$\mathbf{0 . 6 1 7 4}$	$\mathbf{7 8 4}$	$\mathbf{0 . 7 1}$

Rin: Short Vout, apply 1V to Vin, compute the current

$$
\begin{aligned}
& \left(\frac{X-1}{2 k}\right)+\left(\frac{X}{1614}\right)+30\left(\frac{X-1}{2 k}\right)+\left(\frac{X}{1 k}\right)=0 \\
& X=0.9054 V \\
& I=\left(\frac{1 V-0.9054 V}{2 k}\right)=47.3 \mu A \\
& R_{\text {in }}=\frac{1 V}{47.3 \mu A}=21.1 k \Omega
\end{aligned}
$$

Ao: Open Vout, apply 1V to Vin, compute Vout

$$
\begin{aligned}
& \left(\frac{X-1}{2 k}\right)+\left(\frac{X}{1614}\right)+30\left(\frac{X-1}{2 k}\right)+\left(\frac{X}{4 k}\right)=0 \\
& X=0.9524 V \\
& V_{\text {out }}=\left(\frac{3}{4}\right) X=0.7143
\end{aligned}
$$

Rout: Shourt Vin, apply 1V to Vout, compute Iin

$$
\begin{aligned}
& \left(\frac{X}{2 k}\right)+\left(\frac{X}{1614}\right)+30\left(\frac{X}{2 k}\right)+\left(\frac{X-1}{1 k}\right)=0 \\
& X=0.05841 V \\
& I=\left(\frac{1 V}{3 k \Omega}\right)+\left(\frac{1 V-0.05841 V}{1 k \Omega}\right)=1.275 \mathrm{~mA} \\
& R_{\text {out }}=\left(\frac{1 V}{1.275 \mathrm{~mA}}\right)=784 \Omega
\end{aligned}
$$

Ain: Open Vin, apply 1V to Vout, compute Vin

$$
V_{i n}=\left(\frac{1614}{1614+1 k}\right)=0.6174
$$

7. 2-Port model: Determine the 2-port parameters for the following circuit. Assume
$\mathrm{R}=1100+100^{*}($ your birth month $)+($ your birth date $)$ Ohms

R $1100+100^{*}$ mo day	Rin	Ai	Rout	Ao
1644	21	0	5134	-22.52

Rout: Short Vin, apply 1V to Vout

$$
\begin{aligned}
& V_{2}=\left(\frac{1614}{1614+3000}\right) 0.7 \mathrm{~V}=0.2449 \mathrm{~V} \\
& I=\left(\frac{1 V-0.9 .0 .2449 \mathrm{~V}}{4 k}\right)=194.9 \mu \mathrm{~A} \\
& R_{\text {out }}=\left(\frac{1 V}{194 \mu \mathrm{~A}}\right)=5131 \Omega
\end{aligned}
$$

Ao: Apply 1V to Vin. Compute Vout

$$
\begin{aligned}
& V_{2}=\left(\frac{3 k}{1614+3 k}\right)(-30 V)+\left(\frac{1614}{1614+3000}\right)(0.7)\left(0.9 V_{2}\right) \\
& V_{2}=-25.02 \mathrm{~V} \\
& V_{3}=0.9 V_{2}=-22.52
\end{aligned}
$$

