ECE 321-Quiz \#1 - Name

Op-Amp Amplifiers \& mixers., Push-Pull Amplifiers

1) Give 6 equations which allow you to solve for the 6 unknown voltages. You do not need to solve.

- Assume ideal op-amps.
- Assume $\mathrm{R}=1100+100^{*}$ (your birth month) + (your birth day). For example, May 14 th gives $\mathrm{R}=1614$.

$$
V_{1}=V_{2}
$$

$$
V_{4}=V_{5}
$$

$$
\left(\frac{V_{1}-A}{1 k}\right)+\left(\frac{V_{1}-V_{3}}{2 k}\right)=0
$$

$$
\left(\frac{V_{2}-B}{3 k}\right)+\left(\frac{V_{2}-V_{5}}{4 k}\right)=0
$$

$$
\left(\frac{V_{4}-V_{3}}{5 k}\right)+\left(\frac{V_{4}-V_{6}}{6 k}\right)=0
$$

$$
\left(\frac{V_{5}-V_{2}}{4 k}\right)+\left(\frac{V_{5}-V_{6}}{R}\right)+\left(\frac{V_{5}}{1 k}\right)=0
$$

2) Determine Y as a funciton of A, B, and C.

- Assume ideal op-amps
- Assume $\mathrm{R}=1100+100^{*}$ (your birth month) + (your birth day). For example, May 14 th gives $\mathrm{R}=1614$.

$R=1614$

$$
\begin{aligned}
& X=-\left(\frac{1614}{500}\right) A-\left(\frac{1614}{800}\right) B \\
& W=\left(\frac{2}{5}\right) C+\left(\frac{3}{5}\right) X \\
& Y=6 W
\end{aligned}
$$

Putting it all together

$$
\begin{aligned}
& Y=6\left(\left(\frac{2}{5}\right) C+\left(\frac{3}{5}\right)\left(\left(\frac{-1614}{500}\right) A+\left(\frac{-1614}{800}\right) B\right)\right) \\
& Y=-11.62 A-7.26 B+2.40 C
\end{aligned}
$$

3) Design a circuit which outputs

$$
\mathrm{Y}=5 \mathrm{~A}+2 \mathrm{~B}+7 \mathrm{C}
$$

note: the gain on C is positive
Create a voltage, X

$$
X=\left(\frac{5 A+2 B+7 C}{14}\right)
$$

along with

$$
Y=14 X
$$

There are other solutions
4) Design a circuit which outputs

$$
Y=5 A+2 B-7 C
$$

note: the gain on C is negative
One solution:
Create a voltage, X

$$
X=-5 A-2 B
$$

Y is then

$$
Y=-X-7 C
$$

Use inverting amplifiers to implement each stage

5) Determine the voltages and currents for the following push-pull amlifier. Assume

- Ideal op-amps
- $\mathrm{R}=1100+100^{*}($ your birth month $)+($ your birth day $)$
- TIP31 and TIP32 transistors:
- $\beta=200$
- $\left|V_{b e}\right|=0.7 \mathrm{~V}$

$\stackrel{\mathrm{R}}{\mathrm{R}} \mathrm{R}$	V1	V2	v3	14	15
1614	11.1349V	10.4349	3.00 V	6.498 mA	1306 mA

6) Determine the voltages and currents for the following push-pull amlifier. Assume

- Ideal op-amps
- $\mathrm{R}=1100+100^{*}$ (your birth month) + (your birth day)
- TIP31 and TIP32 transistors:
- $\beta=200$
- $\left|V_{b e}\right|=0.7 \mathrm{~V}$

$\stackrel{\mathrm{R}}{\text { dormo tay }}$	V1	V2	V3	14	15	16
1614	OV	-3.928V	-3.228V	2 mA	$2 \mathrm{~mA}$	-2.017mA

$$
\begin{aligned}
& I_{7}=\left(\frac{3.228 \mathrm{~V}}{8 \Omega}\right)=403.5 \mathrm{~mA} \\
& I_{8}=2 m A+403.5 \mathrm{~mA}=405.5 \mathrm{~mA} \\
& I_{6}=-\frac{I_{8}}{201}=-2.017 \mathrm{~mA}
\end{aligned}
$$

