ECE 321-Quiz \#3 - Name

BJT Amplifiers \& 2-Port Models

1) BJT Amplifier: DC Analysis. Determine the Thevenin equivalent of R1 and R2 as well as the Q-point. Assume ideal silicon transistors:

- \quad Vbel $=0.7 \mathrm{~V}$
- $\beta=40$
- $\mathrm{R} 2=1100+100^{*}($ your birth month $)+$ (your birth day $)$. May 14 th would give $\mathrm{R}=1614$ Ohms

R 2 $1100+10^{*} \mathrm{mo}+$ day	Vb	Rb	Vce	Ic
$\mathbf{1 6 1 4}$	1.668 V	1390	9.17 V	311 uA

$R_{b}=R_{1} \| R_{2}=1390 \Omega$
$V_{b}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) 12 \mathrm{~V}=1.668 \mathrm{~V}$
$I_{b}=\left(\frac{1.668 V-0.7 V}{1390+41 \cdot 3 k}\right)=7.77 \mu \mathrm{~A}$
$I_{c}=40 I_{b}=311.1 \mu \mathrm{~A}$
$V_{c}=12-6 k \cdot I_{c}=10.133 \mathrm{~V}$
$V_{e}=3 \mathrm{k} \cdot\left(I_{b}+I_{c}\right)=0.9568 \mathrm{~V}$
$V_{c e}=V_{c}-V_{e}=9.17 \mathrm{~V}$

2) BJT Amplifier: DC Design. Determine R1 and R2 so that

- The Q point is Vce $=6.00 \mathrm{~V}$ and
- The Q point is stabilized for variations in β

Assume

- Ideal silicon transistors ($\mathrm{Vbe}=0.7 \mathrm{~V}, \beta=40$)
- $\mathrm{Rc}=1100+100^{*}$ (birth month) + (birth day). May 14 th gives $\mathrm{Rc}=1614$ Ohms

Rc $1100+100^{*} \mathrm{mo} \mathrm{+} \mathrm{day}$	R 1	R 2	Vb	Rb
$\mathbf{1 6 1 4}$	22.43 K	4.86 K	2.1395 V	4 K
$<41 \mathrm{k}$				

$$
\begin{aligned}
& 6 V=R_{c} I_{c}+R_{e}\left(I_{b}+I_{c}\right) \\
& I_{c}=\left(\frac{6 V}{1614+3000\left(1+\frac{1}{40}\right)}\right)=1.280 \mathrm{~mA} \\
& I_{b}=\frac{I_{c}}{40}=31.99 \mu \mathrm{~A}
\end{aligned}
$$

To stabilize the Q-point

$$
R_{b} \ll(1+\beta) R_{e}=41 \mathrm{k} \Omega
$$

Let $\mathrm{Rb}=4 \mathrm{k}$

$$
V_{b}=I_{b} R_{b}+0.7+R_{e}\left(I_{e}+I_{c}\right)=2.1395 \mathrm{~V}
$$

Solve for R1 and R2

$$
\begin{aligned}
& R_{1}=\left(\frac{122 V}{2.1395 V}\right) 4 k=22.43 k \Omega \\
& R_{2}=4.8679 k \Omega
\end{aligned}
$$

3) BJT: AC Analysis: Draw the small signal model for the following BJT amplifier. Assume

- $r_{f}=1500 \Omega$
- $\beta=40$

answer:

4) 2-Port Models. Determine the 2-port model for the following circuit:

R $1100+10^{*} \mathrm{mo}+$ day	Rin	Ain	Rout	Ao
$\mathbf{1 6 1 4}$	$\mathbf{2 6 5 5}$			
varies with R				

$R_{\text {in }}=10 k \|(1614+2000)=2655 \Omega$
$A_{\text {in }}=0$
$R_{\text {out }}=4 k| | 7 k=2524 \Omega$
$A_{o}=-\left(\frac{1}{1614+2000}\right)(40)(4 k| | 7 k)=-28.17$
5) 2-Port model (experimental): Determine the 2-port parameters based upon the following experimental data:

Case 1:

- Vin $=1 \mathrm{mV} @ 1 \mathrm{kHz}$
- R1 = 0 Ohms
- $\mathrm{R} 2=10 \mathrm{M} \mathrm{Ohms}$
results in Vout $=57 \mathrm{mV}$

Case 2:

- Vin $=1 \mathrm{mV} @ 1 \mathrm{kHz}$
- R1 = X Ohms
- $\mathrm{R} 2=10 \mathrm{M} \mathrm{Ohms}$
results in Vout $=43 \mathrm{mV}$

Case 3

- Vin $=1 \mathrm{mV}$ @ 1 kHz
- R1 = 0 Ohms
- R2 = X Ohms
results in Vout $=37 \mathrm{mV}$

Assume

- $\mathrm{X}=1100+100^{*}$ (your birth month) + (your birth date) Ohms
- $\mathrm{Ai}=0$

X $1100+100^{*} \mathrm{mo}+$ day	Rin	Ai	Rout	Ao
$\mathbf{1 6 1 4}$	4957	$\mathbf{0}$	872	57

Ao comes from case 1:

$$
A_{o} \approx\left(\frac{57 m V}{1 m V}\right) 57 m V
$$

Rin comes from case 2 :

$$
\begin{aligned}
& V_{\text {out }}=\left(\frac{R_{\text {in }}}{R_{1}+R_{\text {in }}}\right) 57 m V=43 m V \\
& R_{\text {in }}=\left(\frac{43 m V}{57 m V-43 m V}\right) 1614=4957 \Omega
\end{aligned}
$$

Rout comes from case 3

$$
\begin{aligned}
& V_{\text {out }}=\left(\frac{R_{2}}{R_{2}+R_{\text {out }}}\right) 57 m V=37 m V \\
& R_{\text {out }}=\left(\frac{57 m V-37 m V}{37 m V}\right) 1614=872 \Omega 3
\end{aligned}
$$

6) Assume X and Y are related by the following transfer function

$$
\begin{aligned}
& Y=\left(\frac{100(s+m)}{\left(s^{3}+m s^{2}+d s+10\right)}\right) X \\
& x(t)=4+5 \cos (m t)+d \sin (m t)
\end{aligned}
$$

where

- m is your birth month (1..12), and
- d is your birth date (1..31)

Find $y(t)$

m birth month (1..12)	d birth date (1..31)	$\mathrm{y}(\mathrm{t})$
$\mathbf{5}$	$\mathbf{1 4}$	$y(t)=200-52 \cos (5 t)-64 \sin (5 t)$

$$
\begin{aligned}
& Y=\left(\frac{100(s+5)}{\left(s^{3}+5 s^{2}+14 s+10\right)}\right) X \\
& x(t)=4+5 \cos (5 t)+14 \sin (5 t)
\end{aligned}
$$

DC:

$$
\mathrm{s}=0
$$

$$
Y=\left(\frac{100(s+5)}{\left(s^{3}+5 s^{2}+14 s+10\right)}\right)_{s=0} \cdot(4)=200
$$

AC:

$$
\begin{aligned}
& \mathrm{s}=\mathrm{j} 5 \\
& Y=\left(\frac{100(s+5)}{\left(s^{3}+5 s^{2}+14 s+10\right)}\right)_{s=j 5} \cdot(5-j 14)=-52.00+j 64.00 \\
& y(t)=-52 \cos (5 t)-64 \sin (5 t)
\end{aligned}
$$

Total answer

$$
y(t)=200-52 \cos (5 t)-64 \sin (5 t)
$$

