ECE 321-Quiz \#3 - Name

BJT Amplifiers \& 2-Port Models

1) BJT Amplifier: DC Analysis. Determine the Thevenin equivalent of R1 and R2 as well as the Q-point. Assume ideal silicon transistors:

- |Vbel $=0.7 \mathrm{~V}$
- $\beta=40$
- $\mathrm{R} 2=1100+100^{*}$ (your birth month) + (your birth day). May 14th would give $\mathrm{R}=1614$ Ohms

R2	Vb	Rb	Vce	Ic
$1100+100^{*}$ mo + day				

2) BJT Amplifier: DC Design. Determine R1 and R2 so that

- The Q point is Vce $=6.00 \mathrm{~V}$ and
- The Q point is stabilized for variations in β

Assume

- Ideal silicon transistors ($\mathrm{Vbe}=0.7 \mathrm{~V}, \beta=40$)
- $\mathrm{Rc}=1100+100^{*}$ (birth month) + (birth day). May 14 th gives $\mathrm{Rc}=1614$ Ohms

Rc $1100+100^{*}$ mo + day	R 1	R 2	Vb	Rb

3) BJT: AC Analysis: Draw the small signal model for the following BJT amplifier. Assume

- $r_{f}=1500 \Omega$
- $\beta=40$

4) 2-Port Models. Determine the 2-port model for the following circuit:

R	Rin	Ain	Rout	Ao
$1100+100^{*}$ mo + day				

5) 2-Port model (experimental): Determine the 2-port parameters based upon the following experimental data:

Case 1:

- Vin $=1 \mathrm{mV} @ 1 \mathrm{kHz}$
- R1 = 0 Ohms
- $\mathrm{R} 2=10 \mathrm{M}$ Ohms
results in Vout $=57 \mathrm{mV}$

Case 2:

- Vin $=1 \mathrm{mV} @ 1 \mathrm{kHz}$
- R1 = X Ohms
- $\mathrm{R} 2=10 \mathrm{M} \mathrm{Ohms}$
results in Vout $=43 \mathrm{mV}$

Case 3

- Vin $=1 \mathrm{mV} @ 1 \mathrm{kHz}$
- R1 = 0 Ohms
- R2 $=\mathrm{X}$ Ohms
results in Vout $=37 \mathrm{mV}$

Assume

- $\mathrm{X}=1100+100^{*}$ (your birth month) + (your birth date) Ohms
- $\mathrm{Ai}=0$

X	Rin	Ai	Rout	Ao
$1100+100^{*}$ mo + day		$\mathbf{0}$		

6) Assume X and Y are related by the following transfer function

$$
\begin{aligned}
& Y=\left(\frac{100(s+m)}{\left(s^{3}+m s^{2}+d s+10\right)}\right) X \\
& x(t)=4+5 \cos (m t)+d \sin (m t)
\end{aligned}
$$

where

- m is your birth month (1..12), and
- d is your birth date (1..31)

Find $y(t)$

m	d	
birth month (1..12)	birth date (1..31)	$\mathrm{y}(\mathrm{t})$

