# ECE 321 - Homework \#2 

Temperature and Calibration. Due Monday, November 15th
Please make the subject "ECE $321 \mathrm{HW} \# 2$ " if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

## Temperature Sensors: Voltage Output

1) A B57891M0103J000 (Digikey 495-2157-ND) thermistor has a temperature - resistance relationship of

$$
R=10,000 \exp \left(\frac{3950}{T+273}-\frac{3950}{298}\right) \Omega
$$

where T is the temperature in degrees Celsius.

1) Design a linearizing circuit (find Ra and Rb ) so that the resistance is approximately linear from 0 C to +30 C . Plot the resulting resitance vs. temperature relationship.

$$
Z=R_{b} \|\left(R_{a}+R\right)
$$

This took some trial and error to get an answer other than


- $\mathrm{Ra}=$ infinity
- $\mathrm{Rb}=0$

Eventually, this worked:

```
function [ J ] = Thermistor( Z )
    Ra = Z(1);
    Rb = 10000;
    R0 = 10000*exp(3950/273 - 3950/298);
    R15 = 10000*exp (3950/288-3950/298);
    R30 = 10000*exp(3950/303 - 3950/298);
% Z = R1 R2 / (R1 + R2)
    Z0 = (R0 + Rb)* (Ra) / (R0 + Ra + Rb);
    Z15 = (R15 + Rb)* (Ra) / (R15 + Ra + Rb);
    Z30 = (R30 + Rb)*(Ra) / (R30 + Ra + Rb);
    E = Z15 - (Z0 + Z30)/2;
    J = E*E;
    end
```

resulting in

```
>> [Ra,e] = fminsearch('Thermistor',[3000])
Ra = 1.9588e+003
e = 5.0397e-016
( Rb = 10k )
```

```
>> Rb = 10000;
>> R = 10000 * exp( 3950 ./ (T+273) - 3950/298 );
>> plot(T,R)
>> xlabel('Temperature (C)');
>> ylabel('R (Ohms)');
```



```
>> Rnet = 1 ./ ( 1/Rb + 1./(Ra + R));
>> plot(T,Rnet)
>> xlabel('Temperature (C)');
>> ylabel('Rnet (Ohms)');
```


2) Using the linearizing circuit from part 1, design a circuit which outputs

- -10 V at 0 C
- +10 V at +30 C
- Proportional in between.

Plot the resulting output voltage vs. temperature.

Assume a voltage divider with a 10 k resistor

```
>> X0 = Rnet0 / (Rnet0 + 10e3) * 10
X0 = 4.3846
>> X30 = Rnet30 / (Rnet30 + 10e3) * 10
X30 = 3.3327
>> gain = 20 / (X0 - X30)
gain = 19.0134
>> offset = (X0 + X30)/2
offset = 3.8586
>> X = Rnet ./ (Rnet + 10000) * 10;
>> Y = gain*(offset - X);
>> plot(T,Y)
>> xlabel('Temperature (C)');
>> ylabel('Y (Volts)');
```


3) Determine a caliration funciton of the form

$$
T=a V+b
$$

to determine the temperature based upon the output voltage from your circuit in problem \#2

- What is the maximum calibration error?

```
>> B = [Y, Y.^0];
>> A = inv(B'*B)*B'*T
a 1.4769
b 15.8343
>> plot(Y,T,'b',Y,B*A,'r');
>> xlim([-10,10])
>> xlabel('Y (Volts)');
>> ylabel('T (degrees C)');
>> max(abs(T - B*A))
ans = 1.0651
```

This calibration scheme is off by 1.0651 degrees (worst case)

4) Determine a calibration function of the form

$$
T=a V^{2}+b V+c
$$

to determine the temperature based upon the output voltage from your circuit in problem \#2

- What is the maximum calibration error?

```
>> B = [Y.^2, Y, Y.^0];
>> A = inv(B'*B)* B'*T
\(A=\)
```

a $\quad-0.0124$
b $\quad 1.4713$
c $\quad 16.2594$
>> plot (Y, T, 'b', Y, B*A, 'r');
$\gg x \lim ([-10,10])$
>> xlabel('Y (Volts)');
>> ylabel('T (degrees C)');
$\gg \max (\operatorname{abs}(T-B * A))$
ans $=$
0.3104


## Temperature Sensors: Frequency Output

5) Determine the frequency of the following 555 timer with $R$ being the linearizing circuit from problem $\# 2$.

Note: For this 555 timer circuit

```
    ton}=(\mp@subsup{R}{1}{}+\mp@subsup{R}{2}{})\cdotC\cdot\operatorname{ln}(2
    toff = R2}\cdotC\cdot\operatorname{ln}(2
    f=(\frac{1}{\mp@subsup{t}{on}{}+\mp@subsup{t}{off}{}})\textrm{Hz}
>> R1 = 1000;
>> R2 = Rnet;
>> C = 1e-6;
>> period = (R1 + 2*R2)*C*log(2);
>> f = 1 ./ period;
>> plot(T,f);
>> xlabel('Temperature (C)');
>> ylabel('frequency (Hz)');
```



6) In CircuitLab, simulate the 555 timer at $T=15 \mathrm{C}$.

- Does the simulated frequency match your computed frequency?

Expected Period when R2 $=1585$ Ohms

$$
t=\left(R_{1}+2 R_{2}\right) \cdot C \cdot \ln (2)=2.890 \mathrm{~ms}
$$

## CircuitLab:

period $=2.94 \mathrm{~ms}$


7) Determine a calibration function of the form

$$
T=a \cdot H z+b
$$

where Hz is the frequency of the oscillator over the temperature range of 0 C to 30 C

- What is the maximum calibration error for your temperature sensor?

```
>> B = [f, f.^0];
>> A = inv(B'*B)**'*T
    0.6689
    -55.9174
>> plot(f,T,'b',f,B*A,'r')
>> xlabel('Frequency (Hz)')
>> ylabel('Temperature (degrees C)');
>> max(abs(T - B*A))
ans=2.1619
```

The maximum calibration error for this sensor is 2.1619 degrees C


