ECE 321 - Homework \#4

2-Port Models. CE Amplifiers (DC and AC). Due Monday, December 6th

CE Amplifiers (DC Analysis)

1) Determine the Q-point for the following circuits. Assume 3904 NPN transistors

- $\beta=200$
- \mid Vbe I $=0.7 \mathrm{~V}$

Step 1: Replace R1 and R2 with their Thevenin equivalent

$$
\begin{aligned}
& R_{t h}=800 k| | 400 k=267 k \\
& V_{t h}=\left(\frac{400 k}{400 k+800 k}\right) 12 \mathrm{~V}=4.00 \mathrm{~V}
\end{aligned}
$$

Step 2: Redraw the circuit replacing the transistor with its model in the active region:

Step 3: Find Ib

$$
\begin{aligned}
& -4 V+267 k \cdot I_{b}+0.7 \mathrm{~V}+1 k \cdot\left(I_{b}+I_{c}\right)=0 \\
& I_{b}=\left(\frac{4.00 \mathrm{~V}-0.7 \mathrm{~V}}{267 \mathrm{k}+201 \cdot 1 k}\right)=7.056 \mu \mathrm{~A} \\
& I_{c}=200 I_{b}=1.411 \mathrm{~mA}
\end{aligned}
$$

Find Vce

$$
\begin{aligned}
& V_{c}=12-5 k \cdot I_{c}=4.944 \mathrm{~V} \\
& V_{e}=1 k \cdot\left(I_{b}+I_{c}\right)=1.418 \mathrm{~V} \\
& V_{c e}=V_{c}-V_{e}=3.525 \mathrm{~V}
\end{aligned}
$$

2) Modify this circuit so that

- $V c e=6.0 \mathrm{~V}$, and
- The Q -point is stabilized for variations in β

Going backwards

$$
\begin{aligned}
& V_{c e}=6 V=12 V-5 k \cdot I_{c}-1 k \cdot\left(I_{b}+I_{c}\right) \\
& I_{c}=\left(\frac{6 V}{5000+\left(1+\frac{1}{200}\right) 1000}\right)=991.7 \mu \mathrm{~A} \\
& I_{b}=\frac{I_{c}}{200}=4.959 \mu \mathrm{~A}
\end{aligned}
$$

To stabilize the Q-point

$$
\begin{aligned}
& (1+\beta) R_{e} \gg R_{b} \\
& 201 k \gg R_{b}
\end{aligned}
$$

Let $\mathrm{Rb} 20 \mathrm{k} . \mathrm{Vb}$ is then

$$
\begin{aligned}
& V_{b}=I_{b} R_{b}+0.7+R_{e}\left(I_{b}+I_{c}\right) \\
& V_{b}=1.796 \mathrm{~V}
\end{aligned}
$$

Solve for R1 and R2

$$
\begin{aligned}
& \left(\frac{R_{1} R_{2}}{R_{1}+R_{2}}\right)=20 \mathrm{k} \\
& \left(\frac{R_{2}}{R_{1}+R_{2}}\right) 12 \mathrm{~V}=1.796 \mathrm{~V} \\
& R_{1}=\left(\frac{12 \mathrm{~V}}{1.796 \mathrm{~V}}\right) 20 \mathrm{k}=133.6 \mathrm{k} \\
& R_{2}=23.53 \mathrm{k}
\end{aligned}
$$

3) Check you answers in CircuitLab

	Vb	Vc	Ve	Vce
Calculated	1.697 V	6.997 V	0.997 V	6.00 V
Simulated	1.700 V	6.882 V	1.040 V	5.842 V

Note that CircuitLab uses $\beta=215$ (Ic / Ib)

2-Port Models

4) Determine the 2-port model for the following circuit

Rin: Short Vout, measure the resistance at the input

$$
R_{\text {in }}=100 k\left\|_{50 k}\right\|_{2000}=1887 \Omega
$$

Ain: Apply 1V at the ouput, measure Vin

$$
V_{i n}=\left(\frac{100 k| | 50 k}{100 k| | 50 k+2000}\right) 1 V=0.9434
$$

Rout: Short Vin. Applu 1V at Vout and measure Iin. From that compute Rout

$$
\begin{aligned}
& I=\frac{1 V}{2000 \Omega}+\frac{1 V}{1000 \Omega}+200\left(\frac{1 V}{2000 \Omega}\right)=101.5 \mathrm{~mA} \\
& R_{\text {out }}=\frac{1 V}{101.5 \mathrm{~mA}}=9.852 \Omega
\end{aligned}
$$

Ao: Apply 1V at Vin. Compute Vout

$$
\begin{aligned}
& \left(\frac{V_{\text {out }}-1}{2000}\right)+\left(\frac{V_{\text {out }}}{1000}\right)+200\left(\frac{V_{\text {out }}-1}{2000}\right)=0 \\
& V_{\text {out }}=0.9901 V
\end{aligned}
$$

So the 2-port model is

5) Determine the 2-port model for the following circuit

Rin: Short Vout. Apply 1V at the input

$$
\begin{aligned}
& I_{\text {in }}=\frac{1 V}{1500 \Omega}+\frac{1 V}{2000 \Omega}+200\left(\frac{1 V}{2000 \Omega}\right)=101.2 m A \\
& R_{\text {in }}=\left(\frac{1 V}{101.2 m A}\right)=9.885 \Omega
\end{aligned}
$$

Ai: Apply 1V at the output. Compute Vin

$$
\operatorname{Vin}=0
$$

Rout: Short Vin. Compute the resistance at the output

$$
\text { Rout }=5000
$$

Ao: Apply 1V at the input. Compute Vout

$$
\begin{aligned}
& -I_{b}=\frac{1 V}{2000 \Omega}=500 \mu A \\
& -200 I_{b}=100 m A \\
& V_{\text {out }}=5000 \Omega \cdot 100 \mathrm{~mA}=500
\end{aligned}
$$

so the 2-port model is

CE Amplifiers (AC Analysis)

6) Draw the small signal model for the CE amplifier (below)

- Determine the resulting 2-port model

From problem \#1

$$
\begin{aligned}
& I_{b}=7.056 \mu A \\
& r_{f}=\left(\frac{0.026}{I_{b}}\right)=3685 \Omega
\end{aligned}
$$

This gives

$$
\begin{aligned}
& R_{\text {in }}=400 k| | 800 k| | 3685=3635 \Omega \\
& A_{\text {in }}=0 \\
& R_{\text {out }}=5000 \Omega \\
& A_{\text {out }}=-\left(\frac{200 \cdot 5000}{3685}\right)=-271.4
\end{aligned}
$$

7) Check your answers for problem \#6 in CircuitLab

- Rin: If you add a resistor in series with Vs equal to Rin, the output drops by half
- Rout: If you load Vout with a resistor equal to Rout, the output drops by half
- Ao: Apply a $1 \mathrm{mV}, 1 \mathrm{kHz}$ sine wave at Vin. The output should be Ao*Vin

V0, R8, and R5 are added so you can run some tests to find the 2-port parameters.

Ao: Set

- $\mathrm{V} 0=1 \mathrm{mV} @ 1 \mathrm{kHz}$
- $\mathrm{R} 8=0$
- $\mathrm{R} 5=10 \mathrm{M}$

Run a time domain simulation and measure the peak at Vout

- Vout $=257.9 \mathrm{mV}$ peak

The 2-port model is then

Ao $=257.9$ (actually -257.9)

Rin: Set

- R8 = 6000
- $\mathrm{R} 5=10 \mathrm{M}$

Measure Vout:

- Vout $=98.81 \mathrm{mV}$

This tells you Rin. It's easier to see with the 2-port model:

$$
V_{\text {out }}=98.81 \mathrm{mV}=257.9 \cdot\left(\frac{R_{\text {in }}}{R_{\text {in }}+6 k}\right) \cdot 1 \mathrm{mV}
$$

Solving for Rin

$$
R_{\text {in }}=\left(\frac{98.81 m V}{257.9 m V-98.81 m V}\right) 6000 \Omega=3727 \Omega
$$

Rout: Set

- $\mathrm{R} 8=0$
- $\mathrm{R} 5=5000$

Measure Vout:

- Vout $=134.6 \mathrm{mV}$

This tells you Rout. The 2-port model is now:

Vout is

$$
V_{\text {out }}=134.6 \mathrm{mV}=\left(\frac{5 k}{5 k+R_{\text {out }}}\right) \cdot 257.9 \cdot 1 \mathrm{mV}
$$

Solving for Rout:

$$
R_{\text {out }}=\left(\frac{257.9 m V-134.6 m V}{134.6 m V}\right) 5000 \Omega=4580 \Omega
$$

	Rin	Ao	Rout
Calcualted	3,685	-271.4	5,000
Simulated	3,727	-257.9	4,580

8) Determine the 2-port model for cascading three of these CE amplifers (CE : CE : CE)

Use the 2-port models

By inspection

$$
\begin{aligned}
& \operatorname{Rin}=3635 \\
& \text { Ain }=0 \\
& \text { Rout }=5000
\end{aligned}
$$

Ao you need to work for. Set V1 $=1 \mathrm{~V}$

$$
\begin{aligned}
& V_{2}=\left(\frac{3635}{3635+5000}\right)(-271.4 \mathrm{~V})=-114.2 \mathrm{~V} \\
& -271.4 \cdot V_{2}=31.007 \mathrm{kV} \\
& V_{3}=\left(\frac{3635}{3635+5000}\right) \cdot(31,007 \mathrm{~V})=13,052 \mathrm{~V} \\
& V_{\text {out }}=-271.4 V_{3}=-3.542 \mathrm{MV}
\end{aligned}
$$

resulting in the 2-port model being

9) Remove Ce. Determine the 2-port model of this CE amplifiers

First draw the small-signal model

Now find the 2-port parameters. Note that the 1000 Ohm resistor looks like a 201k resistor (Ib +200 Ib current flows through it)

$$
\begin{aligned}
& R_{\text {in }}=400 k| | 800 k \|(3685+201 k) \\
& R_{\text {in }}=115.8 k \\
& A_{\text {in }}=0 \\
& R_{\text {out }}=5 k \\
& A_{\text {out }}=-\left(\frac{200 \cdot 5000}{3685+201 k}\right)=-4.886
\end{aligned}
$$

