ECE 321 - Homework \#1

Op-Amps - Due Wednesday April 8th

1) Write the voltage node equations for the following circuit using a non-ideal op-amp model:

You need four equations for four voltge nodes: Vp, Vm, Y, X,
Y: $\quad \mathrm{Vp}=\mathrm{Vm}$
X: $\quad X=200,000(V p-V m)$
$\mathrm{Vp}: \quad \mathrm{Vp}=2$
Vm: $\quad\left(\frac{V_{m}}{2 M}\right)+\left(\frac{V_{m}-Y}{4 k}\right)+\left(\frac{V_{m}}{1 k}\right)=0$
2) Write the voltage node equations for the following circuit assuming ideal op-amps:

You need to write four equations for the four unknown voltage nodes (A, B, C, Y)
B: $\quad V_{A}=V_{p}$
$\mathrm{Y}: \quad V_{c}=V_{p}$
A: $\quad\left(\frac{V_{A}-V_{r}}{1 k}\right)+\left(\frac{V_{A}-V_{b}}{1 k}\right)=0$
C: $\quad\left(\frac{V_{c}-V_{m}}{1 k}\right)+\left(\frac{V_{c}-V_{b}}{1 k}\right)+\left(\frac{V_{c}-V_{y}}{1 k}\right)=0$
3) Mixer: Design an op-amp circuit which will add together two audio signals Input:

- A: $\pm 1 \mathrm{~V}$ signal, capable of driving $10 \mathrm{~mA}, 0-20 \mathrm{kHz}$
- B: same

Output

- $\mathrm{Y}= \pm 10 \mathrm{~V}$ signal, capable of driving $10 \mathrm{~mA}, 0-20 \mathrm{kHz}$

Relationship:

- $\mathrm{Y}=8 \mathrm{~A}+2 \mathrm{~B}$

1 V capable of driving 10 mA means the input resistance is 100 Ohms (or more). Let the feedback resistor be 100 k For a gain of 8 , use an 8:1 ratio for resistors

For a gain of 2 , use a $2: 1$ ratio for resistors

Option 2:

4) Instrumentation Amplifier. Design a circuit to implement the following:

Input:

- $X=3 . .4 \mathrm{~V}$ signal, capable of driving $10 \mathrm{~mA}, 0-20 \mathrm{kHz}$

Output:

- $Y=0 . .10 \mathrm{~V}$ signal, capable of driving $10 \mathrm{~mA}, 0-20 \mathrm{kHz}$

Relationship:

- $\mathrm{Y}=10 \mathrm{X}-30$

Rewrite this as

$$
Y=10(X-3)
$$

5) Instrumentation Amplifier (take 2). Design a circuit to implement the following:

Input:

- Thermistor from 0 to 20 C .
- $R=1000 \cdot e^{-0.04(T-25)} \Omega$

Output:

- $Y=0 . .10 \mathrm{~V}$ signal, capable of driving $10 \mathrm{~mA}, 0-20 \mathrm{kHz}$

Relationship:

- $0 \mathrm{C}=0 \mathrm{~V}$
- $20 \mathrm{C}=10 \mathrm{~V}$
- $\mathrm{Y}=\mathrm{T} / 2$

Assume a 1 k resistor for a voltage divider. In MATLAB

```
-->T = [0,20]'
    0.
    20.
-->R = 1000*exp(-0.04*(T-25))
    2718.2818
    1221.4028
-->X = R ./ (1000+R) * 10
    7.3105858
    5.49834
-->gain = (10 - 0) / (X(2) - X(1))
    gain =
    - 5.5180152
-->offset = X(1)
    7.3105858
```


6) Integrators and Differentiators: Design an op-amp circuit to implement the following function Input:

- $\mathrm{X}= \pm 10 \mathrm{~V}$ sinusoid, capable of driving $10 \mathrm{~mA}, 0 . .100 \mathrm{~Hz}$

Output:

- $\mathrm{Y}= \pm 10 \mathrm{~V}$ sinusoid, capable of driving $10 \mathrm{~mA}, 0 . .100 \mathrm{~Hz}$

Relationship:

- $\frac{d Y}{d t}+6 y=3 x$

Rewriting this...

$$
\begin{aligned}
& s Y+6 Y=3 X \\
& Y=\left(\frac{3}{s+6}\right) X
\end{aligned}
$$

7) Integrators and Differentiators (take 2): Design an op-amp circuit to implement the following function Input:

- $\mathrm{X}= \pm 10 \mathrm{~V}$ sinusoid, capable of driving $10 \mathrm{~mA}, 0 . .100 \mathrm{~Hz}$

Output:

- $\mathrm{Y}=10 \mathrm{~V}$ sinusoid, capable of driving $10 \mathrm{~mA}, 0 . .100 \mathrm{~Hz}$

Relationship:

- $\frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+5 y=2 x$

Rewrite as

$$
\begin{aligned}
& s^{2} Y+6 s Y+5 Y=2 X \\
& Y=\left(\frac{2}{s^{2}+6 s+5}\right) X \\
& Y=\left(\frac{2}{(s+1)(s+5)}\right) X \\
& Y=\left(\frac{1}{s+1}\right)\left(\frac{2}{s+5}\right) X
\end{aligned}
$$

